吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (2): 508-515.doi: 10.13229/j.cnki.jdxbgxb201402037
• paper • Previous Articles Next Articles
LI Yang1,2, WEN Dun-wei3, WANG Ke1, LIU Le2
CLC Number:
[1] Farag A, Ayman E B, Gimel F G, et al. Detection and recognition of lung nodules in spiral CT images using deformable templates and Bayesian post-classification[C]//International Conference on Image Processing(ICIP 2004), Singapore, 2004.[2] Kenji S, Li F, Sone S, et al. Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificialneural network[J]. IEEE Transactions on Medical Imaging, 2005, 24(9): 1138-1150.[3] 孙申申, 任会之, 康雁, 等. 基于遗传算法和支持向量机的肺结节检测[J].系统仿真学报, 2011, 23(3): 497-501, 566. Sun Shen-shen, Ren Hui-zhi, Kang Yan, et al. Lung nodule detection by GA and SVM[J]. Journal of System Simulation, 2011, 23(3): 497-501, 566.[4] 张婧, 李彬, 田联房, 等.结合规则和SVM方法的肺结节识别[J].华南理工大学学报:自然科学版, 2011, 39(2): 125-129, 147. Zhang Jing, Li Bin, Tian Lian-fang, et al. Lung nodule recognition combining rule-based method and SVM[J]. Journal of South China University of Technology (Natural Science Edition), 2011, 39(2):125-129, 147.[5] Suzuki K, Armato S G, Li F, et al. Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography[J]. Med Phys, 2003, 30(6): 1602-1617.[6] Wang Z, Chen S C. New least squares support vector machines based on matrix patterns[J]. Neural Processing Letters, 2007, 26(1): 41-56.[7] 王青竹. 基于三维SVMs的肺部CT中的结节检测算法[D]. 长春:吉林大学通信工程学院, 2011. Wang Qing-zhu. Detection of lung nodules in CT images based on 3D SVMs[D]. Changchun: College of Communication Engineering, Jilin University, 2011.[8] Wang Q Z, Kang W W, Wu C M, et al. Computer-aided detection of lung nodules by SVM based on 3D matrix patterns[J]. Clinical Imaging, 2013, 37(1):62-69.[9] 孙申申.基于CT影像的肺结节检测与分割方法研究[D]. 沈阳:东北大学信息科学与工程学院, 2009. Sun Shen-shen. Lung nodule detection and segmentation methods based on CT images[D]. Shenyang: School of Information Science & Engineering, Northeastern University, 2009.[10] 皋军. 智能识别中的降维新方法及其应用研究[D].无锡:江南大学信息工程学院, 2010. Gao Jun. The study of novel dimensionality reduction methods and application in intelligent recognition[D]. Wuxi: School of Information Engineering, Jiangnan University, 2010. |
[1] | YING Huan,LIU Song-hua,TANG Bo-wen,HAN Li-fang,ZHOU Liang. Efficient deterministic replay technique based on adaptive release strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1917-1924. |
[2] | LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937. |
[3] | SHAN Ze-biao,LIU Xiao-song,SHI Hong-wei,WANG Chun-yang,SHI Yao-wu. DOA tracking algorithm using dynamic compressed sensing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1938-1944. |
[4] | KUI Hai-lin, BAO Cui-zhu, LI Hong-xue, LI Ming-da. Idling time prediction method based on least square support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1360-1365. |
[5] | YAO Hai-yang, WANG Hai-yan, ZHANG Zhi-chen, SHEN Xiao-hong. Reverse-joint signal detection model with double Duffing oscillator [J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290. |
[6] | QUAN Wei, HAO Xiao-ming, SUN Ya-dong, BAI Bao-hua, WANG Yu-ting. Development of individual objective lens for head-mounted projective display based on optical system of actual human eye [J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297. |
[7] | CHEN Mian-shu, SU Yue, SANG Ai-jun, LI Pei-peng. Image classification methods based on space vector model [J]. 吉林大学学报(工学版), 2018, 48(3): 943-951. |
[8] | CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956. |
[9] | MENG Guang-wei, LI Rong-jia, WANG Xin, ZHOU Li-ming, GU Shuai. Analysis of intensity factors of interface crack in piezoelectric bimaterials [J]. 吉林大学学报(工学版), 2018, 48(2): 500-506. |
[10] | LIN Jin-hua, WANG Yan-jie, SUN Hong-hai. Improved feature-adaptive subdivision for Catmull-Clark surface model [J]. 吉林大学学报(工学版), 2018, 48(2): 625-632. |
[11] | WANG Ke, LIU Fu, KANG Bing, HUO Tong-tong, ZHOU Qiu-zhan. Bionic hypocenter localization method inspired by sand scorpion in locating preys [J]. 吉林大学学报(工学版), 2018, 48(2): 633-639. |
[12] | YU Hua-nan, DU Yao, GUO Shu-xu. High-precision synchronous phasor measurement based on compressed sensing [J]. 吉林大学学报(工学版), 2018, 48(1): 312-318. |
[13] | WANG Fang-shi, WANG Jian, LI Bing, WANG Bo. Deep attribute learning based traffic sign detection [J]. 吉林大学学报(工学版), 2018, 48(1): 319-329. |
[14] | LIU Dong-liang, WANG Qiu-shuang. Instantaneous velocity extraction method on NGSLM data [J]. 吉林大学学报(工学版), 2018, 48(1): 330-335. |
[15] | TANG Kun, SHI Rong-hua. Detection of wireless sensor network failure area based on butterfly effect signal [J]. 吉林大学学报(工学版), 2017, 47(6): 1939-1948. |
|