吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (5): 1466-1473.doi: 10.7964/jdxbgxb201405039

Previous Articles     Next Articles

Infrared image adaptive enhancement in Contourlet domain based on chaotic particle swarm optimization

WU Yi-quan1,2,WU Shi-hua1,ZHANG Yu-fei1   

  1. 1.College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2.Science and Technology on Electro-optic Control Laboratory, Institute of Electro-optical Equipnent of AVIC,Luoyang 471009, China
  • Received:2013-03-07 Online:2014-09-01 Published:2014-09-01

Abstract: To further enhance the contrast of infrared image, improve the definition and suppress the noise, an adaptive enhancement method in Contourlet domain based on chaotic Particle Swarm Optimization (PSO) is proposed. First, Contourlet transform of the infrared image is performed. The proportion of low-pass image and detail image in the original image is adjusted, and the contrast is enhanced by linear gray stretch. Then, the coefficients of noisy bandpass directional subbands are adjusted by nonlinear gain function. An integrated quantitative evaluation function is used as the fitness of the chaotic PSO. In this evaluation function three indexes are taken into account, i.e. contrast, definition and signal-to-noise ratio. The optimal parameters, involved in the enhancement method in spatial domain and the nonlinear gain function for adjustment of coefficients of bandpass directional subbands base on Contourlet, are obtained by chaotic PSO algorithm. Experimental results for a large number of infrared images show that, compared with four existing image enhancement methods, the proposed method improves the contrast of enhanced infrared image, increases the definition, reduces the noise, and has a better overall visual effect.

Key words: information processing technology, infrared image enhancement, Contourlet transform, adaptive enhancement, niche chaotic mutation particle swarm optimization, nonlinear gain function

CLC Number: 

  • TN911.73
[1] Zhang Fei, Li Chen-fang, Shi Li-na. Detecting and tracking dim moving point target in IR image sequence[J]. Infrared Physics & Technology, 2005, 46(4): 323-328.
[2] Qidwal Uvais. Infrared image enhancement using H bounds for surveillance applications[J]. IEEE Transactions on Image Processing, 2008, 17(8): 1274-1282.
[3] 陈钱,柏连发,张保民. 红外图像直方图双向均衡技术研究[J]. 红外与毫米波学报, 2003, 22 (6): 428-430.Chen Qian,Bai Lian-fa,Zhang Bao-min. Histogram double equalization in infrared image[J]. Journal of Infrared and Millimeter Waves, 2003, 22 (6): 428-430.
[4] Andrea P, Giovanna R V, John M. Image enhancement via adaptive unsharp masking[J]. IEEE Transactions on Image Processing, 2000, 9(3): 505-510.
[5] 张长江,付梦印,金梅,等. 一种红外图像对比度增强的小波变换法[J]. 红外与毫米波学报, 2004, 23(2): 119-124.Zhang Chang-jiang, Fu Meng-yin, Jin Mei,et al. Approach to enhancement contrast of infrared image based on wavelet transform[J]. Journal of Infrared and Millimeter Waves, 2004, 23(2): 119-124.
[6] Demerial H,Ozcinar C,Anbarjafari G. Satellite image contrast enhancement using discrete wavelet transform and singular value decomposition[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(2): 333-337.
[7] 宫武鹏,王永仲. 一种基于小波变换的红外图像对比度增强技术[J]. 国防科技大学学报,2000,22(6): 117-119.Gong Wu-peng, Wang Yong-zhong. Contrast enhancement of infrared image via wavelet transform[J].Chinese Journal of National University of Defense Technology, 2000, 22 (6) :117-119.
[8] 秦翰林,周慧鑫,刘上乾,等. 基于二代小波变换的红外图像非线性增强算法[J]. 光学学报,2009,29(2): 353-356.Qin Han-lin, Zhou Hui-xin, Liu Shang-qian, et al. Nonlinear enhancement algorithm for infrared image based on second generation wavelet transform[J]. Acta Optica Sinica, 2009, 29(2): 353-356.
[9] 占必超,吴一全,纪守新. 基于平稳小波变换和Retinex的红外图像增强方法[J]. 光学学报, 2010, 30(10):2788-2794.Zhan Bi-chao, Wu Yi-quan, Ji Shou-xin. Infrared image enhancement method based on stationary wavelet transformation and retinex[J]. Acta Optica Sinica, 2010, 30(10): 2788-2794.
[10] Zhang Chang-jiang,Wang Xiao-dong,Zhang Hao-ran. Global and local contrast enhancement algorithm for image using wavelet neural network and stationary wavelet transform[J]. Chinese Optics Letters, 2005, 3(11):636-639.
[11] Stack Jeanluc, Mugtach Fionn, Candsetal Emmeual J. Gray and color image contrast enhancement by the curvelet transform[J]. IEEE Transactions on Image Processing, 2003, 12(6): 706-717.
[12] Do M N, Vetterli M. The contourlet transform: an efficient directional multi resolution image representation[J]. IEEE Transactions on Image Processing,2005, 14 (12) :2091-2106.
[13] 石丹, 李庆武, 倪雪, 等.基于Contourlet变换的红外图像非线性增强[J]. 光学学报, 2009, 29 (2): 342-347.Shi Dan, Li Qing-wu, Ni Xue, et al. Infrared image nonlinear enhancement algorithm based on contourlet transform[J]. Acta Optica Sinica, 2009, 29 (2): 342-347.
[14] 李骜,李一兵,刘丹丹,等. 基于非下采样轮廓波的多曝光工件图像Retinex增强方法[J]. 吉林大学学报:工学版, 2012,42(6): 1592-1596.Li Ao, Li Yi-bing, Liu Dan-dan, et al. Retinex enhancement method of multi-exposure workpiece images based on NSCT[J]. Journal of Jilin University (Engineering and Technology Edition), 2012, 42(6): 1592-1596.
[15] 张长江, 付梦印, 金梅. 基于模拟退火算法的红外图像自适应对比度增强[J]. 中国图象图形学报, 2004, 9(4): 291-295.Zhang Chang-jiang, Fu Meng-yin, Jin Mei. Adaptive contrast enhancement of infrared image based on simulated annealing algorithm[J]. Journal of Image and Graphics, 2004, 9(4): 291-295.
[16] Hashemi Sara, Kiani Soheila, Noroozi Navid. An image contrast enhancement method based on genetic algorithm[J]. Pattern Recognition Letters, 2010, 21(3): 1816-1824.
[17] 李林宜, 李德仁. 粒子群优化算法在遥感影像增强中的应用[J]. 测绘科学技术学报, 2010, 27(2): 116-119.Li Lin-yi, Li De-ren. Research on particle swarm optimization in remote sensing image enhancement[J].Journal of Geomatics Science and Technology,2010, 27(2): 116-119.
[18] 贾东立, 张家树.基于混沌变异的小生境粒子群算法[J]. 控制与决策, 2007, 22(1): 117-120.Jia Dong-li, Zhang Jia-shu. Niche particle swarm optimization combined with chaotic mutation[J]. Control and Decision, 2007, 22(1): 117-120.
[1] YING Huan,LIU Song-hua,TANG Bo-wen,HAN Li-fang,ZHOU Liang. Efficient deterministic replay technique based on adaptive release strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1917-1924.
[2] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[3] SHAN Ze-biao,LIU Xiao-song,SHI Hong-wei,WANG Chun-yang,SHI Yao-wu. DOA tracking algorithm using dynamic compressed sensing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1938-1944.
[4] LIU Zhe, XU Tao, SONG Yu-qing, XU Chun-yan. Image fusion technology based on NSCT and robust principal component analysis model with similar information [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1614-1620.
[5] YAO Hai-yang, WANG Hai-yan, ZHANG Zhi-chen, SHEN Xiao-hong. Reverse-joint signal detection model with double Duffing oscillator [J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[6] QUAN Wei, HAO Xiao-ming, SUN Ya-dong, BAI Bao-hua, WANG Yu-ting. Development of individual objective lens for head-mounted projective display based on optical system of actual human eye [J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[7] CHEN Mian-shu, SU Yue, SANG Ai-jun, LI Pei-peng. Image classification methods based on space vector model [J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[8] CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[9] MENG Guang-wei, LI Rong-jia, WANG Xin, ZHOU Li-ming, GU Shuai. Analysis of intensity factors of interface crack in piezoelectric bimaterials [J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[10] LIN Jin-hua, WANG Yan-jie, SUN Hong-hai. Improved feature-adaptive subdivision for Catmull-Clark surface model [J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[11] WANG Ke, LIU Fu, KANG Bing, HUO Tong-tong, ZHOU Qiu-zhan. Bionic hypocenter localization method inspired by sand scorpion in locating preys [J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
[12] YU Hua-nan, DU Yao, GUO Shu-xu. High-precision synchronous phasor measurement based on compressed sensing [J]. 吉林大学学报(工学版), 2018, 48(1): 312-318.
[13] WANG Fang-shi, WANG Jian, LI Bing, WANG Bo. Deep attribute learning based traffic sign detection [J]. 吉林大学学报(工学版), 2018, 48(1): 319-329.
[14] LIU Dong-liang, WANG Qiu-shuang. Instantaneous velocity extraction method on NGSLM data [J]. 吉林大学学报(工学版), 2018, 48(1): 330-335.
[15] TANG Kun, SHI Rong-hua. Detection of wireless sensor network failure area based on butterfly effect signal [J]. 吉林大学学报(工学版), 2017, 47(6): 1939-1948.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!