吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (6): 1655-1663.doi: 10.13229/j.cnki.jdxbgxb201406019

Previous Articles     Next Articles

Parallel hydraulic hybrid braking regenerative characteristics

DONG Han1, 2, LIU Xin-hui1, 2, WANG Xin1, 2, ZHENG Bo-yuan1, 2, LIANG Wei-quan1, 2, WANG Jia-yi1, 2   

  1. 1.College of Mechanical Science and Engineering, Jilin University, Changchun 130022, China;
    2.State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022,China
  • Received:2013-09-24 Online:2014-11-01 Published:2014-11-01

Abstract: The energy saving mechanism of the braking energy recovery system of Parallel Hydraulic Hybrid Vehicle (PHHV) is introduced. By the establishment of vehicle dynamics model, an AMESim model is set up correspondingly according to the actual parameters of the vehicle and its hydraulic components. Then, by simulation analysis of the vehicle braking and energy recovery, a corresponding curve is obtained. To verify the correctness of the simulation, experiments corresponding to different working conditions are carried out on a hydraulic experiment table. The experiment results are basically in agreement with the simulation results. By analyzing the causes of the error between the simulation and experiment, the following conclusions can be drawn. Under the conditions of shorter braking time and lower braking force, the energy recovery rate of the parallel hydraulic hybrid system is high, which is over 43.12%. The correctness of the simulation model is verified by experiment results. The AMESim model can be used to intuitively analyze the effect of braking energy recovery of PHHV.

Key words: turn and control of fluid, hydraulic hybrid, energy recovery, hydraulic accumulator, AMESim

CLC Number: 

  • TH137
[1] Clarke P, Muneer T, Cullinane K. Cutting vehicle emissions with regenerative braking[J]. Transportation Research Part D, 2010,15(3):160-167.
[2] Kim Y,Filipi Z. Simulation study of a series hydraulic hybrid propulsion system for a light truck[C]∥SAE Paper,2007-01-4151.
[3] 张庆永,常思勤. 液驱混合动力车辆能量回收系统关键问题研究[J]. 机械设计与制造,2011,39(4): 256-258. Zhang Qing-yong, Chang Si-qin. Study on key problems of the energy recovery system for hydraulic hybrid vehicles[J]. Machinery Design &Manufacture, 2011,39(4):256-258.
[4] 赵立军,王昕,姜继海. 液压混合动力飞机牵引车制动控制系统[J]. 哈尔滨工业大学学报, 2011,43(9):81-85. Zhao Li-jun, Wang Xin, Jiang Ji-hai. Study on brake control system of aircraft towing tractor base on hydraulic hybrid[J]. Journal of Harbin Institute of Technology,2011,43(9):81-85.
[5] Fussner D, Wendel G, Wray C. Analysis of a hybrid multi-mode hydromechanical transmission[C]∥SAE Technical Paper,2007-01-1455.
[6] Sun Hui, Yang Li-fu, Jing Jun-qing. Hydraulic/electric synergy system(HESS) design for heavy hybrid vehicles[J]. Energy, 2010,35(12):5328-5335.
[7] Sun Hui, Jiang Ji-hai, Wang Xin. Parameters matching and control method for hydraulic hybrid vehicle with secondary regulation technology[J]. Chinese Journal of Mechanical Engineering(English Edition),2009,22(1):57-63.
[8] 刘涛,刘清河,姜继海. 并联式液压混合动力车辆再生制动的影响因素[J]. 吉林大学学报:工学版,2010,40(6):1473-1477. Liu Tao, Liu Qing-he, Jiang Ji-hai. Factors influencing regenerative braking of parallel hydraulic hybrid vehicles[J]. Journal of Jilin University(Engineering and Technology Edition),2010,40(6):1473-1477.
[9] 余志生. 汽车理论[M]. 北京:机械工业出版社, 2009.
[10] 刘宇辉,姜继海. 二次调节流量耦联静液传动系统性能[J]. 吉林大学学报:工学版,2008,38(5):1095-1100. Liu Yu-hui, Jiang Ji-hai. Performance of static-hydraulic flow coupled system with secondary regulation[J]. Journal of Jilin University(Engineering and Technology Edition), 2008,38(5):1095-1100.
[11] 丁左武,赵东标. 小型汽车制动能量再生系统液压蓄能器计算与选择[J]. 机械科学与技术, 2007,26(7):926-930. Ding Zuo-wo, Zhao Dong-biao. Calculation and selection of a cars hydraulic accumulator in its regenerative energy braking system[J]. Mechanical Science and Technology for Aerospace Engineering,2007,26(7):926-930.
[12] 付永领,祁晓野. LMS Imagine. Lab AMESim系统建模和仿真参考手册[M]. 北京:航空航天大学出版社,2011.
[1] CHU Liang, SUN Cheng-wei, GUO Jian-hua, ZHAO Di, LI Wen-hui. Evaluation method of braking energy recovery based on wheel cylinder pressure [J]. 吉林大学学报(工学版), 2018, 48(2): 349-354.
[2] WANG Jia-yi, LIU Xin-hui, WANG Xin, QI Hai-bo, SUN Xiao-yu, WANG Li. Mechanism and inhibition for displacement shifting impact on digital secondary component [J]. 吉林大学学报(工学版), 2017, 47(6): 1775-1781.
[3] WANG Li, LIU Xin-hui, WANG Xin, CHEN Jin-shi, LIANG Yi-jie. Shifting strategy of digital hydraulic transmission system for wheel loader [J]. 吉林大学学报(工学版), 2017, 47(3): 819-826.
[4] WANG De-jun, LYU Zhi-chao, WANG Qi-ming, ZHANG Xian-da, WANG Zi-jian. Engine misfire fault diagnosis based on cylinder pressure identification [J]. 吉林大学学报(工学版), 2017, 47(3): 917-923.
[5] LI Shen-long, LIU Shu-cheng, XING Qing-kun, ZHANG Jing, LAI Yu-yang. Clutch friction pair motion effect caused by oil flow based on LBM-LES [J]. 吉林大学学报(工学版), 2017, 47(2): 490-497.
[6] ZHANG Min, LI Song-jing, CAI Shen. Microfluidic liquid color-changing glasses controlled by valveless piezoelectric micro-pump [J]. 吉林大学学报(工学版), 2017, 47(2): 498-503.
[7] GU Shou-dong, LIU Jian-fang, YANG Zhi-gang, JIAO Xiao-yang, JIANG Hai, LU Song. Characteristics of solder paste jetting valve driven by piezostack [J]. 吉林大学学报(工学版), 2017, 47(2): 510-517.
[8] YANG Hua-yong, WANG Shuang, ZHANG Bin, HONG Hao-cen, ZHONG Qi. Development and prospect of digital hydraulic valve and valve control system [J]. 吉林大学学报(工学版), 2016, 46(5): 1494-1505.
[9] YUAN Zhe, XU Dong, LIU Chun-bao, LI Xue-song, LI Shi-chao. Strength analysis of hydraulic retarder blade based on the process of thermal-fluid structure interaction [J]. 吉林大学学报(工学版), 2016, 46(5): 1506-1512.
[10] SHEN Wei, ZHANG Di-jia, SUN Yi, JIANG Ji-hai. Control design of the swash plate angle for hydraulic pump/motor based on FSMI method [J]. 吉林大学学报(工学版), 2016, 46(5): 1513-1519.
[11] ZHAO Cun-ran, LIU Wei, JIANG Ji-hai, SHAO Hui, TIAN Yong. Accelerated model of swash-plate axial piston pump [J]. 吉林大学学报(工学版), 2016, 46(4): 1124-1129.
[12] ZHANG Qin-guo, QIN Si-cheng, MA Run-da, YANG Li-guang, XI Yuan, LIU Jin-qiao. Hydraulic system thermal characteristics of loader working device [J]. 吉林大学学报(工学版), 2016, 46(3): 811-817.
[13] CHEN Jin-shi, WANG Guo-qiang, GONG Xun, WANG Xin, WANG Li, DU Yang. Characteristics of cartridge one-way relief valve [J]. 吉林大学学报(工学版), 2016, 46(2): 465-470.
[14] LIU Xin-hui, LI Qian-wen, CHEN Jin-shi, ZHANG Peng, NIU Ping-jie. Mathematical modeling and simulation of load-sensing priority valve [J]. 吉林大学学报(工学版), 2015, 45(6): 1817-1824.
[15] ZHANG Qin-guo, QIN Si-cheng, MA Run-da, LIU Yu-fei, XI Yuan. Match and simulation analysis of hydraulic system radiator of wheel loader [J]. 吉林大学学报(工学版), 2015, 45(4): 1124-1129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!