吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (6): 1849-1859.doi: 10.13229/j.cnki.jdxbgxb201406048

Previous Articles     Next Articles

Image fusion based on area objective assessment in finite discrete shearlet transform domain

CHEN Guang-qiu1, 3, GAO Yin-han2, LIU Guang-wen3, SUN Jun-xi3   

  1. 1.College of Instrumentation & Electrical Engineering, Jilin University,Changchun 130061,China;
    2.State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022,China;
    3.School of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun 130022, China
  • Received:2013-08-22 Online:2014-11-01 Published:2014-11-01

Abstract: To enhance the accuracy of multi-source image fusion, an adaptive fusion method is proposed. This method is based on the area objective assessment in Finite Discrete Shearlet Transform (FDST) domain. The source images are decomposed to subband images with multi-scale and multi-direction by FDST. The gradient information correlation factor is taken as the coefficient weight for low-frequency subband fusion; while for high-frequency subband, consistency selection of the coefficient absolute value and area standard deviation is adopted as the fusion rule. The fused low and high frequency coefficients are reconstructed to image by Finite Discrete Shearlet Inverse Transform (FDSIT). Fusion experiment is done with several sets of different modality images, and objective performance assessments of the fusion results are implemented. Results indicate that the proposed method performs better in subjective and objective assessments than other existing Multi-Scale Decomposition (MSD) fusion techniques.

Key words: information processing, finite discrete shearlet transform (FDST), fusion rule, objective assessment, shift-invariant

CLC Number: 

  • TP391.4
[1] 付朝阳,郭雷,常威威. 基于小波变换和多通道脉冲耦合神经网络的高光谱图像融合[J]. 吉林大学学报:工学版,2011,41(3):838-843. Fu Zhao-yang,Guo Lei, Chang Wei-wei. Fusion algorithm of hyperspectral images based on wavelet transform and multi-channel PCNN[J]. Journal of Jilin University (Engineering and Technology Edition), 2011,41(3):838-843.
[2] 孙明超,张崇,刘晶红. 多尺度图像增强可见光与红外图像融合[J]. 吉林大学学报:工学版,2012,42(3):738-742. Sun Ming-chao,Zhang Chong,Liu Jing-hong. Fusion of visible and infrared images based on multi-scale image enhancement[J]. Journal of Jilin University(Engineering and Technology Edition), 2012,42(3):738-742.
[3] Candès E J, Donoho D L. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities[J]. Comm on Pure and Appl Math,2004,57(2):219-266.
[4] Do M N, Vetterli M. The contourlet transform: an efficient directional multiresolution image representation[J]. IEEE Trans Image Proc,2005,14(12):2091-2106.
[5] 马苗, 万仁远, 尹义龙. 基于相似性灰关联的Curvelet域多聚焦图像融合[J]. 电子学报,2012,40(10):1984-1988. Ma Miao, Wan Ren-yuan, Yin Yi-long. Multi-focus image fusion based on grey relation of similarity in curvelet domain[J]. Acta Electronica Sinica, 2012,40(10):1984-1988.
[6] 路雅宁,郭雷,李晖晖. 结合边缘信息和图像特征信息的曲波域遥感图像融合[J]. 光子学报,2012,41(9): 1118-1123. Lu Ya-ning,Guo Lei,Li Hui-hui. Remote sensing image fusion using edge information and features of SAR image based on curvelet transform[J]. ACTA Photonic Sinica,2012,41(9): 1118-1123.
[7] 宋梦馨,郭平. 结合Contourlet和HSI变换的组合优化遥感图像融合方法[J]. 计算机辅助设计与图形学学报,2012,24(1):83-88. Song Meng-xin,Guo Ping. A combinatorial optimization method for remote sensing image fusion with contourlet and HIS transform[J]. Journal of Computer-Aided Design & Computer Graphics, 2012,24(1):83-88.
[8] 冯鹏,王静,魏彪,等. 一种基于Contourlet变换的GFP图像与相衬图像融合算法研究[J]. 光电子·激光,2013,24(1): 176-183. Feng Peng,Wang Jing,Wei Biao, et al. A fusion algorithim for GFP images and phase-contrast images based on Contourlet transform[J]. Journal of Optoelectronics·Laser,2013,24(1):176-183.
[9] Häuser S, Steidl G. Convex multiclass segmentation with shearlet regularization[J]. International Journal of Computer Mathematics,2013, 90(1):62-81.
[10] 牛晓晖,贾克斌. 基于 PCA 和自适应区域方差的图像融合方法[J]. 计算机应用研究,2010,27(8): 3179-3181. Niu Xiao-hui,Jia Ke-bin. Image fusion algorithm based on PCA & self-adaptive region variance[J]. Application Research of Computers, 2010,27(8):3179-3181.
[11] 王红梅, 陈励华, 李言俊, 等. 一种基于显著特征的图像融合算法[J]. 西北工业大学学报,2010,28(4):486-490. Wang Hong-mei, Chen Li-hua, Li Yan-jun, et al. A new and more effective image fusion algorithm based on salient feature[J]. Journal of Northwestern Polytechnical University, 2010,28(4):486-490.
[12] 易正俊,宋瑞晶,李华锋. 基于非采样 Contourlet 变换的图像融合算法[J]. 信号处理,2010, 26(6): 875-879. Yi Zheng-jun, Song Rui-jing, Li Hua-feng. Image fusion algorithm based on nonsubsampled contourlet transform[J]. Signal Processing, 2010, 26(6):875-879.
[13] Mertens T, Kautz J, Van Reeth F. Exposure fusion: a simple and practical alternative to high dynamic range photography[J]. Computer Graphics Forum, 2009, 28(1): 161-171.
[14] 李俊山,杨威,张雄美. 红外图像处理、分析与融合[M]. 北京,科学出版社, 2009:203-205.
[15] 刘坤,郭雷,常威威. 基于Contourlet变换的区域特征自适应图像融合算法[J].光学学报,2008,28(4):681-686. Liu Kun, Guo Lei, Chang Wei-wei. Regional feature self-adaptive image fusion algorithm based on contourlet transform[J]. Acta Optica Sinica, 2008,28(4):681-686.
[16] 金星,李晖晖,时丕丽. 非下采样Contourlet变换与脉冲耦合神经网络相结合的SAR与多光谱图像融合[J]. 中国图象图形学报,2012,17(9):1188-1195. Jin Xing,Li Hui-hui,Shi Pi-li. SAR and multispectral image fusion algorithm based on pulse coupled neural networks and non-subsampled Contourlet transform[J]. Journal of Image and Graphics, 2012,17(9):1188-1195.
[17] Leung L W, King B, Vohora V. Comparison of image data fusion techniques using entropy and INI[C]∥Proc of 22nd Asian Conference on Remote Sensing, Singapore,2001,152-157.
[18] Qu Gui-hong, Zhang Da-li, Yan Pin-fan. Information measure for performance of image fusion[J]. Electronic Letters,2002,38(7):313-315.
[19] Xydeas C S, Petrovi V. Objective image fusion performance measure[J]. Electronics Letters, 2000,36(4):308-309.
[20] 曾立庆,蒋年德. 基于邻域内相关系数与平均梯度的图像融合方法[J]. 计算机工程与设计,2010,31(7):1533-1535. Zeng Li-qing,Jiang Nian-de. Image fusion based on correlation coefficient and average gradient[J]. Computer Engineering and Design, 2010,31(7):1533-1535.
[21] 王卫星,曾基兵. 冗余提升不可分离小波的图像融合方法[J]. 电子科技大学学报,2009,38(1):13-16. Wang Wei-xing, Zeng Ji-bing. Image fusion method based on redundant lifting non-separable wavelet transforms[J]. Journal of University of Electronic Science and Technology of China, 2009,38(1):13-16.
[22] 潘瑜, 王静, 孙权森, 等. 结合图像质量评价参数的多尺度分解融合策略[J]. 应用科学学报,2011,29(2):159-168. Pan Yu, Wang Jing, Sun Quan-sen, et al. Fusion strategy of multi-scale image decomposition combined with image quality evaluation[J]. Journal of Applied Sciences,2011,29(2):159-168.
[1] YING Huan,LIU Song-hua,TANG Bo-wen,HAN Li-fang,ZHOU Liang. Efficient deterministic replay technique based on adaptive release strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1917-1924.
[2] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[3] SHAN Ze-biao,LIU Xiao-song,SHI Hong-wei,WANG Chun-yang,SHI Yao-wu. DOA tracking algorithm using dynamic compressed sensing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1938-1944.
[4] YAO Hai-yang, WANG Hai-yan, ZHANG Zhi-chen, SHEN Xiao-hong. Reverse-joint signal detection model with double Duffing oscillator [J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[5] QUAN Wei, HAO Xiao-ming, SUN Ya-dong, BAI Bao-hua, WANG Yu-ting. Development of individual objective lens for head-mounted projective display based on optical system of actual human eye [J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[6] CHEN Mian-shu, SU Yue, SANG Ai-jun, LI Pei-peng. Image classification methods based on space vector model [J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[7] CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[8] MENG Guang-wei, LI Rong-jia, WANG Xin, ZHOU Li-ming, GU Shuai. Analysis of intensity factors of interface crack in piezoelectric bimaterials [J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[9] LIN Jin-hua, WANG Yan-jie, SUN Hong-hai. Improved feature-adaptive subdivision for Catmull-Clark surface model [J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[10] WANG Ke, LIU Fu, KANG Bing, HUO Tong-tong, ZHOU Qiu-zhan. Bionic hypocenter localization method inspired by sand scorpion in locating preys [J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
[11] YU Hua-nan, DU Yao, GUO Shu-xu. High-precision synchronous phasor measurement based on compressed sensing [J]. 吉林大学学报(工学版), 2018, 48(1): 312-318.
[12] WANG Fang-shi, WANG Jian, LI Bing, WANG Bo. Deep attribute learning based traffic sign detection [J]. 吉林大学学报(工学版), 2018, 48(1): 319-329.
[13] LIU Dong-liang, WANG Qiu-shuang. Instantaneous velocity extraction method on NGSLM data [J]. 吉林大学学报(工学版), 2018, 48(1): 330-335.
[14] TANG Kun, SHI Rong-hua. Detection of wireless sensor network failure area based on butterfly effect signal [J]. 吉林大学学报(工学版), 2017, 47(6): 1939-1948.
[15] LI Juan, MENG Ke-xin, LI Yue, LIU Hui-li. Seismic signal noise suppression based on similarity matched Wiener filtering [J]. 吉林大学学报(工学版), 2017, 47(6): 1964-1968.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!