吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (5): 1696-1701.doi: 10.13229/j.cnki.jdxbgxb201505045

Previous Articles     Next Articles

Novel particle filter algorithm based on second-prediction

WU Yong, WANG Jun, CAO Yun-he, ZHANG Pei-chuan   

  1. National Laboratory of Radar Signal Processing, Xidian University, Xi'an 710071, China
  • Received:2014-02-20 Online:2015-09-01 Published:2015-09-01

Abstract: In order to handle the problem that current observation information is not used in the particle sampling stage of the Particle Filter (PF), a novel particle filter algorithm based on Second-Prediction (SP-PF) is proposed and implemented on the Graphics Processing Unit (GPU). First, sampling from the state transition function is performed to obtain the predicted particles, and by least square estimation, a new generator of sampling particles is constructed. Then, on the basis of the predicted particles, the current observation information is introduced into the secondary particle prediction. After double predictions, each new particle is an unbiased estimate of the current state. Finally, the current state is estimated by means of weighting these particles, and after the completion of state estimation, resampling is conducted. Experimental results demonstrate that the proposed algorithm improves the precision of estimation compared with Standard Particle Filter (SPF), Auxiliary Particle Filter (APF) and Unscented Particle Filter (UPF). Furthermore, the processing efficiency of SP-PF is greatly raised by using GPU.

Key words: information processing technology, particle filter, graphics processing unit, least square estimation

CLC Number: 

  • TN911
[1] Sedai S, Bennamoum M, Huynh D Q. A Gausian process guided particle filter for tracking 3D human pose in video[J]. IEEE Transactions on Image Processing, 2013, 22(11): 4286-4300.
[2] Yardim C, Gerstoft P, Hodgkiss W S. Tracking refractivity from clutter using Kalman and particle filters[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(4): 1060-1069.
[3] 夏楠, 邱天爽,李景春,等. 一种卡尔曼滤波与粒子滤波相结合的非线性滤波算法[J]. 电子学报, 2013, 41(1): 148-152. Xia Nan, Qiu Tian-shuang, Li Jing-chun, et al. A nonlinear filter algorithm combining the Kalman filter and the particle filter[J]. Acta Electronica Sinica, 2013, 41(1): 148-152.
[4] Kalman R E. A new approach to linear filtering and prediction problems[J]. Transactions of the AMSE Journal of Basic Engineering, 1960, 82(1): 35-45.
[5] Kotecha J H,Djuric P M. Gaussian particle filter[J]. IEEE Transactions on Signal Processing, 2003, 51(10): 2591-2601.
[6] Li Hong-wei, Wang Jun. Particle filter for manoeuvring target tracking via passive radar measurements with glint noise[J]. IET Radar Sonar and Navigation, 2012, 6(3): 180-189.
[7] Arulampalam M S,Maskell S,Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.
[8] Georgy Jacques, Korenberg Michael J, Bayoumi Mohamed M. Low-cost three-dimensional navig- ation solution for RISS/GPS integration using mixture particle filter[J]. IEEE Transactions on Vehicular Technology, 2010, 59(2): 599-614.
[9] 戴连君,唐涛,蔡伯根. 基于自适应粒子滤波的北斗卫星信号周跳探测[J]. 吉林大学学报:工学版, 2013, 43(4): 1146-1152. Dai Lian-jun, Tang Tao, Cai Bo-gen. Cycle slip detection for BeiDou satellite based on adaptive particle filter[J]. Journal of Jilin University(Engineering and Technology Edition), 2013, 43(4): 1146-1152.
[10] Wang Ya-feng, Sun Fu-chun,Zhang You-an,et al. Central difference particle filter applied to transfer alignment for SINS on missiles[J]. IEEE Transactions on Aerospace and Electronic Systems,2012, 48(1): 375-387.
[11] Pitt M K,Shephard N. Filtering via simulation: auxiliary particle filters[J]. Journal of the American Statistical Association, 1999, 94(446): 590-599.
[12] Zhan Rong-hui, Xin Qin, Wan Jian-wei. Modified unscented particle filter for nonlinear Bayesian tracking[J]. Journal of Systems Engineering and Electronics, 2008, 19(1): 7-14.
[13] Li Hong-wei, Wang Jun,Su Hong-tao. Improved particle filter based on differential evolution[J].Electronics Letters, 2011, 47(19):1078-1079.
[14] 侯静, 景占荣, 羊彦. 远距离干扰环境下目标跟踪的扩展卡尔曼粒子滤波算法[J]. 电子与信息学报, 2013, 35(7): 1587-1592. Hou Jing, Jing Zhan-rong, Yang Yan. Extended Kalman particle filter algorithm for target tracking in stand-off jammer[J]. Journal of Electronics & Information Technology, 2013, 35(7): 1587-1592.
[15] 于洪波, 王国宏,孙 芸,等. 一种融合UKF和EKF的粒子滤波状态估计算法[J]. 系统工程与电子技术, 2013, 35(7): 1375-1379. Yu Hong-bo, Wang Guo-hong, Sun Yun, et al. Particle filtering algorithm of state estimation on fusion of UKF and EKF[J]. Systems Engineering and Electronics, 2013, 35(7): 1375-1379.
[16] 何友,修建娟,关欣,等. 雷达数据处理及应用[M]. 北京:电子工业出版社, 2013: 76-78.
[17] 李红伟, 王俊, 王海涛. 一种基于差分演化的粒子滤波算法[J]. 电子与信息学报, 2011, 33(7): 1639-1643. Li Hong-wei, Wang Jun, Wang Hai-tao. A new particle filter based on differential evolution method[J]. Journal of Electronics & Information on Technology, 2011, 33(7): 1639-1643.
[1] YING Huan,LIU Song-hua,TANG Bo-wen,HAN Li-fang,ZHOU Liang. Efficient deterministic replay technique based on adaptive release strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1917-1924.
[2] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[3] SHAN Ze-biao,LIU Xiao-song,SHI Hong-wei,WANG Chun-yang,SHI Yao-wu. DOA tracking algorithm using dynamic compressed sensing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1938-1944.
[4] YAO Hai-yang, WANG Hai-yan, ZHANG Zhi-chen, SHEN Xiao-hong. Reverse-joint signal detection model with double Duffing oscillator [J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[5] QUAN Wei, HAO Xiao-ming, SUN Ya-dong, BAI Bao-hua, WANG Yu-ting. Development of individual objective lens for head-mounted projective display based on optical system of actual human eye [J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[6] CHEN Mian-shu, SU Yue, SANG Ai-jun, LI Pei-peng. Image classification methods based on space vector model [J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[7] CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[8] MENG Guang-wei, LI Rong-jia, WANG Xin, ZHOU Li-ming, GU Shuai. Analysis of intensity factors of interface crack in piezoelectric bimaterials [J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[9] LIN Jin-hua, WANG Yan-jie, SUN Hong-hai. Improved feature-adaptive subdivision for Catmull-Clark surface model [J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[10] WANG Ke, LIU Fu, KANG Bing, HUO Tong-tong, ZHOU Qiu-zhan. Bionic hypocenter localization method inspired by sand scorpion in locating preys [J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
[11] YU Hua-nan, DU Yao, GUO Shu-xu. High-precision synchronous phasor measurement based on compressed sensing [J]. 吉林大学学报(工学版), 2018, 48(1): 312-318.
[12] WANG Fang-shi, WANG Jian, LI Bing, WANG Bo. Deep attribute learning based traffic sign detection [J]. 吉林大学学报(工学版), 2018, 48(1): 319-329.
[13] LIU Dong-liang, WANG Qiu-shuang. Instantaneous velocity extraction method on NGSLM data [J]. 吉林大学学报(工学版), 2018, 48(1): 330-335.
[14] TANG Kun, SHI Rong-hua. Detection of wireless sensor network failure area based on butterfly effect signal [J]. 吉林大学学报(工学版), 2017, 47(6): 1939-1948.
[15] LI Juan, MENG Ke-xin, LI Yue, LIU Hui-li. Seismic signal noise suppression based on similarity matched Wiener filtering [J]. 吉林大学学报(工学版), 2017, 47(6): 1964-1968.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!