吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (6): 2056-2061.doi: 10.13229/j.cnki.jdxbgxb201506046

Previous Articles     Next Articles

Robust tracking method for multiple frequency-hopping signals

SHANG Jia-dong, WANG Zu-lin, ZHOU Li-na, YANG Lan   

  1. School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
  • Received:2014-03-28 Online:2015-11-01 Published:2015-11-01

Abstract: A robust tracking method for multiple frequency-hopping signals is presented. First, the measurement noise is modeled using the t distribution. Then, a novel Bayesian probability model is proposed to describe the multiple Frequency-Hopping (FH) signals tracking problem, such that the influence of the impulsive noise on the tracking performance can be attenuated efficiently. Finally, a Multiple Variational Sparse Bayesian Learning (M-VSBL) algorithm is derived for the proposed Bayesian model to estimate the hopping frequencies, directions of arrival and detect the hopping times. Simulation results demonstrate the robustness and accuracy of the proposed method under impulsive noise.

Key words: information processing, frequency-hopping signals tracking, impulsive noise, t distribution, variational Bayesian learning

CLC Number: 

  • TN911.72
[1] Glisic S, Nikolic Z, Milosevic N, et al. Advanced frequency hopping modulation for spread spectrum WLAN[J]. IEEE Journal on Selected Areas in Communications,2000,18(1):16-29.
[2] Liu X, Sidiropoulos N D, Swami A. Blind high-resolution localization and tracking of multiple frequency hopped signals[J]. IEEE Transaction on Signal Processing,2002,50(4):889-900.
[3] Liu Zhang-meng, Huang Zhi-tao, Zhou Yi-yu. Hopping instants detection and frequency tracking of FH signals with single or multiple channels[J]. IET Communications,2012,6(1):84-89.
[4] Sha Zhi-chao, Liu Zhang-meng, Huang Zhi-tao. Online hop timing detection and frequency estimation of multiple FH signals[J]. ETRI Journal,2013,35(5):748-756.
[5] 王丰华,沙志超,刘章孟,等. 基于贝叶斯稀疏学习的多跳频信号频率跟踪方法[J]. 电子与信息学报,2013,35(6):1395-1399.
Wang Feng-hua, Sha Zhi-chao, Liu Zhang-meng, et al. A frequency tracking method for multiple frequency-hopping signals based on sparse Bayesian learning[J]. Journal of Electronic & Information Technology,2013,35(6):1395-1399.
[6] Zimmermann M, Dostert K. Analysis and modeling of impulsive noise in broad-band powerline communications[J]. IEEE Transactions on Electromagnetic Compatibility,2002,44(1):249-258.
[7] Maronna R A, Martin R D, Yohai V J. Robust statistics: theory and methods[M]. New York: John Wiely & Sons,2006.
[8] Pham D S, Venkatesh S. Improved image recovery from compressed data contaminated with impulsive noise[J]. IEEE Transactions on Image Processing,2012,21(1):397-405.
[9] Wipf D P, Rao B D. An empirical Bayesian strategy for solving the simultaneous sparse approximation problem[J]. IEEE Transactions on Signal Processing,2007,55(7):3704-3716.
[10] Lange K L, Little R J A, Taylorb J M G. Robust statistical modeling using the t distribution[J]. Journal of the American Statistical Association,1989,84(408):881-896.
[11] Bishop C M, Tipping M E. Variational relevance vector machines[C]∥Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence,Menlo Park, CA, USA,2000:46-53.
[12] 陈坤,田华,何晶,等. 一种基于Huber函数的康塔方位稳健估计算法[J]. 空军工程大学学报:自然科学版,2013,14(6):18-22.
Chen Kun,Tian Hua,He Jing,et al. A robust estimation algorithm of TACAN azimuth based on Huber function[J]. Journal of Air Force Engineering University(Natural Science Edition),2013,14(6):18-22.
[1] YING Huan,LIU Song-hua,TANG Bo-wen,HAN Li-fang,ZHOU Liang. Efficient deterministic replay technique based on adaptive release strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1917-1924.
[2] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[3] SHAN Ze-biao,LIU Xiao-song,SHI Hong-wei,WANG Chun-yang,SHI Yao-wu. DOA tracking algorithm using dynamic compressed sensing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1938-1944.
[4] LI Zhi-jun, WANG Hao, HE Li, CAO Li-juan, ZHANG Yu-chi, ZHAO Xin-shun. Soot distribution features and its influence factors in catalytic diesel particulate filte [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1466-1474.
[5] YAO Hai-yang, WANG Hai-yan, ZHANG Zhi-chen, SHEN Xiao-hong. Reverse-joint signal detection model with double Duffing oscillator [J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[6] QUAN Wei, HAO Xiao-ming, SUN Ya-dong, BAI Bao-hua, WANG Yu-ting. Development of individual objective lens for head-mounted projective display based on optical system of actual human eye [J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[7] CHEN Mian-shu, SU Yue, SANG Ai-jun, LI Pei-peng. Image classification methods based on space vector model [J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[8] CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[9] MENG Guang-wei, LI Rong-jia, WANG Xin, ZHOU Li-ming, GU Shuai. Analysis of intensity factors of interface crack in piezoelectric bimaterials [J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[10] LIN Jin-hua, WANG Yan-jie, SUN Hong-hai. Improved feature-adaptive subdivision for Catmull-Clark surface model [J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[11] WANG Ke, LIU Fu, KANG Bing, HUO Tong-tong, ZHOU Qiu-zhan. Bionic hypocenter localization method inspired by sand scorpion in locating preys [J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
[12] YU Hua-nan, DU Yao, GUO Shu-xu. High-precision synchronous phasor measurement based on compressed sensing [J]. 吉林大学学报(工学版), 2018, 48(1): 312-318.
[13] WANG Fang-shi, WANG Jian, LI Bing, WANG Bo. Deep attribute learning based traffic sign detection [J]. 吉林大学学报(工学版), 2018, 48(1): 319-329.
[14] LIU Dong-liang, WANG Qiu-shuang. Instantaneous velocity extraction method on NGSLM data [J]. 吉林大学学报(工学版), 2018, 48(1): 330-335.
[15] TANG Kun, SHI Rong-hua. Detection of wireless sensor network failure area based on butterfly effect signal [J]. 吉林大学学报(工学版), 2017, 47(6): 1939-1948.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!