吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (3): 804-810.doi: 10.13229/j.cnki.jdxbgxb201703016

Previous Articles     Next Articles

Improvement in wall functions for engine radiators

PENG Wei, LI Guo-xiang, YAN Wei   

  1. School of Energy and Power Engineering, Shandong University, Ji'nan 250061, China
  • Online:2017-05-20 Published:2017-05-20

Abstract: The accuracy of wall functions needs improvement for near-wall flow in engine radiators. In order to make wall functions suitable for engine radiators, Improved Blended Wall Functions (IBWFs) were customized by blending the Standard Wall Functions (SWFs) and introducing influence coefficients of pressure gradients. Numerical simulations were conducted in Fluent. In the simulations, different near-wall treatments including IBWFs were applied on a tube-and-corrugated- fin type radiator. Experimental verifications were carried out in RWT800 radiator wind tunnel . The results indicate that the IBWFs save more than half of computational time of SWFs, meanwhile, the deviations of pressure drop and temperature differences between inlet and outlet decrease 9.1% and 14.5% respectively. The IBWFs provide a more efficient and reliable near-wall treatment for radiator numerical simulations.

Key words: power mechanical engineering, wall functions, radiator, numerical simulation

CLC Number: 

  • TK422
[1] 王飞,秦四成,赵克利. 装载机管片式散热器流动与传热特性数值分析[J]. 吉林大学学报:工学版,2009,39(增刊1):196-199.
Wang Fei, Qin Si-cheng, Zhao Ke-li.Numerical simulation study on wheel loader tube-fin radiator air flow and heat transfer character[J]. Journal of Jilin University(Engineering and Technology Edition),2009,39(Sup.1):196-199.
[2] Jacobi A M, Shah R K. Air-side flow and heat transfer in compact heat exchangers: A discussion of enhancement mechanisms[J]. Heat Transfer En-gineering,1998,19(4),29-41.
[3] 郭健忠,徐敏,张光德,等. 汽车散热器的性能分析及翅片结构优化[J]. 科学技术与工程,2016,16(26):58-64.
Guo Jian-zhong, Xu Min, Zhang Guang-de, et al. Performance analysis and optimization of automo-bile radiator fin structure[J]. Science Technology and Engineering,2016,16(26):58-64.
[4] 王福军. 计算流体动力学分析[M]. 北京:清华大学出版社,2004.
[5] Defraeye T, Blocken B, Carmeliet J. CFD analysis of convective heat transfer at the surfaces of a cube immersed in a turbulent boundary layer[J]. Inter-national Journal of Heat and Mass Transfer,2010,53(1):297-308.
[6] 吴光强,陈凯,王立军. 液力变矩器数值模拟中近壁处理方法影响的研究[J]. 汽车工程,2013,35(10): 878-881.
Wu Guang-qiang, Chen Kai, Wang Li-jun. A study on the effects of near-wall treatment schemes on numerical simulation of torque converter[J]. Automotive Engineering,2013,35(10):878-881.
[7] 彭玮,李国祥,闫伟. 工程机械用散热器数值模拟中近壁处理方法影响分析[J]. 内燃机工程,2015,36(1):100-105.
Peng Wei, Li Guo-xiang, Yan Wei. Analysis of the effects of near-wall treatments on numerical simulation of construction machinery radiators[J]. Chinese Internal Combustion Engine Engineering,2015,36(1):100-105.
[8] Kader B A. Temperature and concentration profiles in fully turbulent boundary layers[J]. International Journal of Heat and Mass Transfer,1981,24(9):1541-1544.
[9] Shih T H, Povinelli L A, Liu N S. Application of generalized wall function for complex turbulent flows[J]. Journal of Turbulence,2003,4(1):1-16.
[10] Utyuzhnikov S V. Generalized wall functions and their application for simulation of turbulent flows[J]. International Journal for Numerical Methods in Fluids,2005,47(10/11):1323-1328.
[11] Defraeye T, Blocken B, Carmeliet J. An adjusted temperature wall function for turbulent forced convective heat transfer for bluff bodies in the atmospheric boundary layer[J]. Building and Environ-ment,2011,46(11):2130-2141.
[12] 窦国仁. 明渠和管道中紊流各流区的统一规律[J]. 水利水运工程学报,1980(1):1-12.
Dou Guo-ren. Generalized laws of turbulent flow in open channels and pipes for various regions[J]. Hydro-Science and Engineering, 1980(1):1-12.
[13] Zhang Teng-fei, Zhou Hong-biao, Wang Shu-guang. An adjustment to the standard temperature wall function for CFD modeling of indoor convective heat transfer[J]. Building and Environment,2013,68(10):159-169.
[14] 章梓雄,董曾南. 粘性流体力学[M]. 第2版. 北京:清华大学出版社, 2011.
[15] Shah R K, Heikal M R, Thonon B, et al. Progress in the numerical analysis of compact heat exchanger surfaces[J]. Advances in Heat Transfer,2001,34:363-443.
[16] Leontev A I, Fomichev V M. Heat transfer and drag in a turbulent boundary layer with a pressure gradient[J]. Journal of Engineering Physics and Thermophysics,1983,45:5-11.
[17] ANSYS, Inc. ANSYS fluent theory guide[DB/OL].[2015-11-10]. https:∥zh.scribd.com/doc/140163341/Ansys-Fluent-14-0-Theory-Guide.
[18] Launder B E, Spalding D B. The Numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering,1974,3(2):269-289.
[19] Kestin J, Richardson P D.Heat transfer across turbulent, incompressible boundary layers[J]. International Journal of Heat & Mass Transfer,1963,6(2):147-189.
[20] White F M, Christoph G H.A simple new analysis of compressible turbulent skin friction under arbitrary conditions[R].Kingston:University of Rhode Island, 1971.
[21] JB/T8577-2005. 内燃机水散热器技术条件[S].
[22] 刘敏珊,杨帆,董其伍,等.流体横掠管束模拟中壁面函数影响研究[J]. 热能动力工程,2010,25(5):497-500.
Liu Min-shan, Yang Fan, Dong Qi-wu, et al. Study of the influence of wall surface functions in simulating a fluid laterally sweeping a tube bundle[J]. Journal of Engineering for Thermal Energy and Power,2010,25(5):497-500.
[23] 崔洪江,宁宝焕,刘俊杰,等. 机车散热器空气侧CFD数值模拟与仿真研究[J]. 内燃机车,2011(8):22-26.
Cui Hong-jiang, Ning Bao-huan, Liu Jun-jie, et al. CFD numerical simulation research on locomotive radiator cooling air side[J]. Diesel Locomotives,2011(8):22-26.
[1] GUO Hao-tian,XU Tao,LIANG Xiao,YU Zheng-lei,LIU Huan,MA Long. Optimization on thermal surface with rib turbulator inspired by turbulence of alopias' gill in simplified gas turbine transition piece [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1793-1798.
[2] GONG Ya-feng, WANG Bo, WEI Hai-bin, HE Zi-heng, HE Yu-long, SHEN Yang-fan. Surface subsidence law of double-line shield tunnel based on Peck formula [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1411-1417.
[3] QIU Yan-kai, LI Bao-ren, YANG Gang, CAO Bo, LIU Zhen. Characteristics and mechanism reducing pressure ripple of hydraulic system with novel hydraulic muffler [J]. 吉林大学学报(工学版), 2018, 48(4): 1085-1091.
[4] LIANG Xiao-bo, CAI Zhong-yi, GAO Peng-fei. Numerical simulation and experiment of cylindrical forming of sandwich composite panel [J]. 吉林大学学报(工学版), 2018, 48(3): 828-834.
[5] LIU Chun-guo, LIU Wei-dong, DENG Yu-shan. Effect of multi-point punch active loading path on the stretch-forming of sheet [J]. 吉林大学学报(工学版), 2018, 48(1): 221-228.
[6] FU Wen-zhi, LIU Xiao-dong, WANG Hong-bo, YAN De-jun, LIU Xiao-li, LI Ming-zhe, DONG Yu-qi, ZENG Zhen-hua, LIU Gui-bin. Multi-point forming process of 1561 aluminum alloy surfaces [J]. 吉林大学学报(工学版), 2017, 47(6): 1822-1828.
[7] LYU Meng-meng, GU Zheng-wei, XU Hong, LI Xin. Process optimization of hot stamping for anti-collision beam with ultra high strength [J]. 吉林大学学报(工学版), 2017, 47(6): 1834-1841.
[8] WANG Hong-chao, SHAN Xi-zhuang, YANG Zhi-gang. Numerical simulation of the influence of ground effect simulation on vehicle cooling system experiment in climate wind tunnel [J]. 吉林大学学报(工学版), 2017, 47(5): 1373-1378.
[9] WANG Guo-lin, SHEN Fei, ZHOU Hai-chao, YANG Jian. Evaluation of tyre pumping noise and design of low noise structure [J]. 吉林大学学报(工学版), 2017, 47(4): 1024-1031.
[10] TANG Zhi-gang, ZHANG Li, SHANG Hui-chao, LYU Xiao-hui, CHEN Xi, ZHENG Ren-wei. Combustion characteristics in glow-plug ignition miniature ICE and influence of residual gas [J]. 吉林大学学报(工学版), 2017, 47(3): 811-818.
[11] KOU Shu-qing, SONG Wei-feng, SHI Zhou. Fracture splitting simulation and defect analysis of 36MnVS4 connecting rod [J]. 吉林大学学报(工学版), 2017, 47(3): 861-868.
[12] GU Zheng-wei, LYU Meng-meng, ZHANG Wen-xue, LEI Jiao-jiao, XU Hong. Stamping of front-end three-dimensional skin of China electric multiple units [J]. 吉林大学学报(工学版), 2017, 47(3): 869-875.
[13] ZHANG Peng, KOU Shu-qing, ZHAO Yong, LIN Bao-jun. Ananlsis of three rollers axial knurling process of assembled camshaft [J]. 吉林大学学报(工学版), 2016, 46(6): 1953-1960.
[14] YUAN Zhe, XU Dong, LIU Chun-bao, LI Xue-song, LI Shi-chao. Strength analysis of hydraulic retarder blade based on the process of thermal-fluid structure interaction [J]. 吉林大学学报(工学版), 2016, 46(5): 1506-1512.
[15] CHENG Yan-yan, LI Ming-zhe, XING Jian. Effect of unit form on flexible stretch forming of multi-point die [J]. 吉林大学学报(工学版), 2016, 46(5): 1552-1557.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Tian-shi, SONG Dong-jian, GAO Qing, WANG Guo-hua, YAN Zhen-min, SONG Wei. Construction of power battery liquid cooling system for electric vehicle and simulation of its working process[J]. 吉林大学学报(工学版), 2018, 48(2): 387 -397 .
[2] LIU Han-guang, WANG Guo-qiang, MENG Dong-ge, ZHAO Huan-yu. Reasonable pre-tension research of crawler traveling gear of hydraulic excavator[J]. 吉林大学学报(工学版), 2018, 48(2): 486 -491 .
[3] LI Ming-da, KUI Hai-lin, MEN Yu-zhuo, BAO Cui-zhu. Aerodynamic drag of heavy duty vehicle with complex underbody structure[J]. 吉林大学学报(工学版), 2017, 47(3): 731 -736 .
[4] DONG Chao, CHENG Kai, HU Kang-le, HU Wen-qiang. Pitching movement performance of all terrain articulated tracked vehicles[J]. 吉林大学学报(工学版), 2017, 47(3): 827 -836 .