吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (6): 1964-1968.doi: 10.13229/j.cnki.jdxbgxb201706039

• Orginal Article • Previous Articles     Next Articles

Seismic signal noise suppression based on similarity matched Wiener filtering

LI Juan1, MENG Ke-xin1, LI Yue1, LIU Hui-li2   

  1. 1.College of Communication and Engineering, Jilin University, Changchun 130012, China;
    2.College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
  • Received:2016-10-24 Online:2017-11-20 Published:2017-11-20

Abstract: Seismic exploration is the main method in oil and gas exploration. It becomes more and more difficult to identify the collected seismic signals, because of a sharp drop in resolution and the Signal to Noise Ratio (SNR). Conventional seismic record processing methods have shown no adaptability to very low SNR. In order to realize the requirement of high SNR, high resolution and high fidelity of seismic data processing in strong noise, this paper proposes a novel method of seismic data noise suppression based on similarity matched Wiener filtering. In this method, based on the local and non-local similarity of seismic events, the whole record is divided into overlapping sub-blocks and the blocks containing similar signals are found out by some distance measures. Then, the low rank matrix is constructed by Singular Value Decomposition (SVD) and the smaller singular values are removed representing noise. The noise in the constructed signal is effectively suppressed. Using this estimation, the Wiener filter is able to obtain a more accurate transfer function. At the same time, the effect of prior information on noise suppression is eliminated. Experiment results illustrate that the proposed method improves the SNR and effectively retains the signal amplitude.

Key words: information processing technology, Wiener filtering, block matching, singular value decomposition

CLC Number: 

  • TN911.7
[1] 李道品. 低渗透砂岩油田开发[M]. 北京:石油出版社,1997.
[2] 张军华,吕宁,田连玉, 等. 地震资料去噪方法技术综合评述[J]. 地球物理学进展,2006,21(2):546-553.
Zhang Jun-hua, Lv Ning, Tian Lian-yu, et al. An overview of the methods and techniques for seismic data noise attenuation[J]. Progression Geophysics,2006,21(2):546-553.
[3] Famoush F A, Mike B, Jyoti B. Noise suppression in surface microseismic data[J]. The Leading Edge,2012,31(12):1496-1501.
[4] 徐宏斌,李庶林,陈际经. 基于小波变换的大尺度岩体结构微震监测信号去噪方法研究[J]. 地震学报,2012,34(1):85-96.
Xu Hong-bin, Li Shu-lin, Chen Ji-jing. A study on method of signal denoising based on wavelet transform for micro-seismicity monitoring in large-scale rockmass structures[J]. Acta Seismologica Sinica,2012,34(1):85-96.
[5] 王梅,侯振杰,吕国玲,等. 基于Ridgelet变换的多尺度去噪算法研究[J]. 微型机与应用,2012,31(2):25-27.
Wang Mei, Hou Zhen-jie, Lv Guo-ling, et al. A multi-scale method for image denoising based on Ridgelet transform[J]. Microcomputer & Its Applications,2012,31(2):25-27.
[6] Srarck J L, Candes E J, Donoho D L. The curvelet transform for image denoising[J]. IEEE Transactions on Image Processing,2002,11(6):670-684.
[7] 谢成芳,彭真明,周晶晶,等. 基于Contourlet 变换的地震多属性融合方法[J]. 石油地球物理勘探,2014,49(4):739-744.
Xie Cheng-fang,Peng Zhen-ming,Zhou Jing-jing, et al. Multi attribute fusion method for seismic signal based on contourlet transform[J]. Oil Geophysical Prospecting,2014,49(4):739-744.
[8] Hu H, Sun H, Deng C, et al. Image denoising algorithm based on shearlet transform[J]. Journal of Computer Application,2010,30(6):1562-1564.
[9] 田雅男,李月,林红波,等. 基于频域正则维纳滤波的地震随机噪声压制[J]. 吉林大学学报:工学版,2015,45(6):2043-2048.
Tian Ya-nan, Li Yue, Lin Hong-bo, et al. Frequency-domain regularized wiener filtering for seismic random noise suppression[J]. Journal of Jilin University (Engineering and Technology Edition),2015,45(6):2043-2048.
[10] 沈鸿雁,李庆春. 频域奇异值分解(SVD)地震波场去噪[J]. 石油地球物理勘探,2010,45(2):185-189.
Shen Hong-yan, Li Qing-chun. Seismic wave field separation and denoising in linear domain via singular value decomposition (SVD)[J]. Oil Geophysical Prospecting,2010,45(2):185-189.
[1] YING Huan,LIU Song-hua,TANG Bo-wen,HAN Li-fang,ZHOU Liang. Efficient deterministic replay technique based on adaptive release strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1917-1924.
[2] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[3] SHAN Ze-biao,LIU Xiao-song,SHI Hong-wei,WANG Chun-yang,SHI Yao-wu. DOA tracking algorithm using dynamic compressed sensing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1938-1944.
[4] YAO Hai-yang, WANG Hai-yan, ZHANG Zhi-chen, SHEN Xiao-hong. Reverse-joint signal detection model with double Duffing oscillator [J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[5] QUAN Wei, HAO Xiao-ming, SUN Ya-dong, BAI Bao-hua, WANG Yu-ting. Development of individual objective lens for head-mounted projective display based on optical system of actual human eye [J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[6] CHEN Mian-shu, SU Yue, SANG Ai-jun, LI Pei-peng. Image classification methods based on space vector model [J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[7] CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[8] MENG Guang-wei, LI Rong-jia, WANG Xin, ZHOU Li-ming, GU Shuai. Analysis of intensity factors of interface crack in piezoelectric bimaterials [J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[9] LIN Jin-hua, WANG Yan-jie, SUN Hong-hai. Improved feature-adaptive subdivision for Catmull-Clark surface model [J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[10] WANG Ke, LIU Fu, KANG Bing, HUO Tong-tong, ZHOU Qiu-zhan. Bionic hypocenter localization method inspired by sand scorpion in locating preys [J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
[11] YU Hua-nan, DU Yao, GUO Shu-xu. High-precision synchronous phasor measurement based on compressed sensing [J]. 吉林大学学报(工学版), 2018, 48(1): 312-318.
[12] WANG Fang-shi, WANG Jian, LI Bing, WANG Bo. Deep attribute learning based traffic sign detection [J]. 吉林大学学报(工学版), 2018, 48(1): 319-329.
[13] LIU Dong-liang, WANG Qiu-shuang. Instantaneous velocity extraction method on NGSLM data [J]. 吉林大学学报(工学版), 2018, 48(1): 330-335.
[14] TANG Kun, SHI Rong-hua. Detection of wireless sensor network failure area based on butterfly effect signal [J]. 吉林大学学报(工学版), 2017, 47(6): 1939-1948.
[15] YANG Chao-yu, LI Ce, LIANG Yin-cheng, YANG Feng. Blurred object detection based on improved particle filter in coal mine underground surveilance [J]. 吉林大学学报(工学版), 2017, 47(6): 1976-1985.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!