吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (6): 1976-1985.doi: 10.13229/j.cnki.jdxbgxb201706041

• Orginal Article • Previous Articles     Next Articles

Blurred object detection based on improved particle filter in coal mine underground surveilance

YANG Chao-yu1, 2, LI Ce1, LIANG Yin-cheng1, YANG Feng1   

  1. 1.School of Mechanical Electronic and Information Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China;
    2.School of Economics and Management, Anhui University of Science and Technology, Huainan 232001, China
  • Received:2016-10-13 Online:2017-11-20 Published:2017-11-20

Abstract: Regarding that the videos collected by intelligent monitoring system in coal mine underground are blur, a novel algorithm for unclear video object detection based on improved particle filter is proposed. In the framework of standard particle filter, a nonlinear, non-Gaussian and multi system state space fusion model is constructed based on frame difference. First, particle sampling and probability density propagation are realized in the region of the key points obtained in the frame difference image. Then, the weighted posterior sample particles are used to represent the posterior probability density of the multi system state space fusion model. The mean of the samples is used to estimate and fuse the posteriori state of the system. Finally, the system state space model is output to fulfill the object detection. Experiments are carried out using the video data of the Sanjiaohe coal mine underground monitoring system. The performance of the proposed model is evaluated by comparison with extended Kalman filter, unscented Kalman filter and particle filter. The improved accuracy and effectiveness of the proposed method are demonstrated.

Key words: information processing technology, object detection, particle filter, multi-state space, critical region sampling

CLC Number: 

  • TD76
[1] 孙继平. 煤矿安全生产监控与通信技术[J]. 煤炭学报,2010,35(11):1925-1929.
Sun Ji-ping. Technologies of monitoring and communication in the coal mine[J]. Journal of China Coal Society,2010,35(11):1925-1929.
[2] 孙继平,陈伟,王福增,等. 矿井监控图像中空列车的识别[J]. 中国矿业大学学报,2007,36(5):597-602.
Sun Ji-ping, Chen Wei, Wang Fu-zeng, et al. Recognizing empty trainsin coalmine surveillance images[J]. Journal of China University of Mining & Technology,2007,36(5):597-602.
[3] 厉丹. 视频目标检测与跟踪算法及其在煤矿中应用的研究[D]. 徐州:中国矿业大学信息与控制工程学院,2011.
Li Dan. Research on object detection and tracking algorithm and its application in coal mine[D]. Xuzhou: School of Information and Control Engineering,China University of Mining and Technology,2011.
[4] 张谢华,张申,方帅,等. 煤矿智能视频监控中雾尘图像的清晰化研究[J].煤炭学报,2014,39(1):198-204.
Zhang Xie-hua, Zhang Shen, Fang Shuai, et al. Clearing research on fog and dust images in coalmine intelligent video surveillance[J]. Journal of China Coal Society,2014,39(1):198-204.
[5] 杜明本,陈立潮,潘理虎. 基于暗原色理论和自适应双边滤波的煤矿尘雾图像增强算法[J]. 计算机应用,2015,35(5):1435-1438.
Du Ming-ben, Chen Li-chao, Pan Li-hu. Enhancement algorithm for fog and dust images in coal mine based on dark channel prior theory and bilateral adaptive filter[J]. Journal of Computer Applications,2015,35(5):1435-1438.
[6] 王法胜,鲁明羽,赵清杰,等. 粒子滤波算法[J]. 计算机学报,2014,37(8):1679-1694.
Wang Fa-sheng, Lu Ming-yu, Zhao Qing-jie, et al. Particle filter algorithm[J]. Chinese Journal of Computers,2014,37(8):1679-1694.
[7] Kitagawa G. Monte Carlo filter and smoother for non-Gaussian non-linear state space models[J]. Journal of Computational and Graphical Statistics,1996,5(1):1-25.
[8] Gordon N, Salmond D. Novel approach to non-linear and non-Gaussian Bayesian state estimation[J]. Proc of Institute Electric Engineering,1993,140(2):107-113.
[9] 吴刚. 基于粒子滤波与增量学习的车辆跟踪方法硏究[D]. 南京:南京理工大学计算机学院,2014.
Wu Gang. Research of vehicle tracking methods based on particle filter and incremental learning[D]. Nanjing: College of Computer,Nanjing University of Science and Technology, 2014.
[10] Carpenter J, Clifford P. Improved particle filter for nonlinear problems[J]. IEEE Proc of Radar, Sonar and Navigation,1999,146(1):2-7.
[11] 毛晓楠. 基于粒子滤波的图像分割算法研究[D]. 上海:上海交通大学模式识别与图像处理研究所,2008.
Mao Xiao-nan. Research on image segmentation algorithm based on particle filter[D]. Shanghai: Institute of Image Processing and Pattern Recognition,Shanghai Jiao Tong University,2008.
[12] 李昱辰.基于粒子滤波的视频目标跟踪方法研究[D]. 兰州:兰州理工大学电气工程与信息工程学院,2013.
Li Yu-chen. Research of video target tracking methods based on particle filter[D]. Lanzhou: College of Electrical and Information Engineering, Lanzhou University of Technology,2013.
[13] 于金霞,汤永利,刘文静. 粒子滤波自适应机制研究综述[J]. 计算机应用研究,2010,27(2):417-422.
Yu Jin-xia, Tang Yong-li, Liu Wen-jing. A survey on adaptive mechanism of particle filter[J]. Applications Research of Computers,2010,27(2):417-422.
[14] Mikami D, Otsuka K, Yamato J. Memory-based particle filter for tracking objects with large variation in pose and appearance[C]//Proceedings of the European Conference on Computer Vision, Crete, Greece,2010:215-228.
[15] Tang Y, Bai X, Yang X, et al. Skeletonization with particle filters[J]. International Journal of Pattern Recognition and Artificial Intelligence,2010,24(4):619-634.
[16] 张苗辉,刘先省. 基于无味粒子滤波的动态场景下高机动目标跟踪[J]. 光电子激光,2010,30(6):924-929.
Zhang Miao-hui, Liu Xian-xing. Maneuverable target tracking in dynamic scene based on unscented particle filter[J]. Journal of Optoelectronics Laser,2010,30(6):924-929.
[1] YING Huan,LIU Song-hua,TANG Bo-wen,HAN Li-fang,ZHOU Liang. Efficient deterministic replay technique based on adaptive release strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1917-1924.
[2] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[3] SHAN Ze-biao,LIU Xiao-song,SHI Hong-wei,WANG Chun-yang,SHI Yao-wu. DOA tracking algorithm using dynamic compressed sensing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1938-1944.
[4] YAO Hai-yang, WANG Hai-yan, ZHANG Zhi-chen, SHEN Xiao-hong. Reverse-joint signal detection model with double Duffing oscillator [J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[5] QUAN Wei, HAO Xiao-ming, SUN Ya-dong, BAI Bao-hua, WANG Yu-ting. Development of individual objective lens for head-mounted projective display based on optical system of actual human eye [J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[6] CHEN Mian-shu, SU Yue, SANG Ai-jun, LI Pei-peng. Image classification methods based on space vector model [J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[7] CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[8] MENG Guang-wei, LI Rong-jia, WANG Xin, ZHOU Li-ming, GU Shuai. Analysis of intensity factors of interface crack in piezoelectric bimaterials [J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[9] LIN Jin-hua, WANG Yan-jie, SUN Hong-hai. Improved feature-adaptive subdivision for Catmull-Clark surface model [J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[10] WANG Ke, LIU Fu, KANG Bing, HUO Tong-tong, ZHOU Qiu-zhan. Bionic hypocenter localization method inspired by sand scorpion in locating preys [J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
[11] YU Hua-nan, DU Yao, GUO Shu-xu. High-precision synchronous phasor measurement based on compressed sensing [J]. 吉林大学学报(工学版), 2018, 48(1): 312-318.
[12] WANG Fang-shi, WANG Jian, LI Bing, WANG Bo. Deep attribute learning based traffic sign detection [J]. 吉林大学学报(工学版), 2018, 48(1): 319-329.
[13] LIU Dong-liang, WANG Qiu-shuang. Instantaneous velocity extraction method on NGSLM data [J]. 吉林大学学报(工学版), 2018, 48(1): 330-335.
[14] TANG Kun, SHI Rong-hua. Detection of wireless sensor network failure area based on butterfly effect signal [J]. 吉林大学学报(工学版), 2017, 47(6): 1939-1948.
[15] LI Juan, MENG Ke-xin, LI Yue, LIU Hui-li. Seismic signal noise suppression based on similarity matched Wiener filtering [J]. 吉林大学学报(工学版), 2017, 47(6): 1964-1968.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!