吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (4): 1063-1071.doi: 10.13229/j.cnki.jdxbgxb20170570

Previous Articles     Next Articles

Integrated pulsation micro mixing chip for three-phase flow

LIU Guo-jun, MA Xiang, YANG Zhi-gang, WANG Cong-hui, WU Yue, WANG Teng-fei   

  1. College of Mechanical Science and Engineering, Jilin University, Changchun 130022, China
  • Received:2017-06-02 Online:2018-07-01 Published:2018-07-01

Abstract: To adapt to a more complex mixed system, an integrated three-phase flow pulsation Micro Mixing Chip (MMC) based on piezoelectric actuation technology was proposed. Using the mixing degree as the evaluation index of mixing effect, simulation and optimization analysis were carried out, and the structural parameters and working parameters of the MMC were optimized. A MMC with the size of 100 mm × 50 mm × 50 mm was fabricated by injection molding and bonding processes. In order to test the mixing performance of the chip, experiments of the liquid phase synthesis of silver nanoparticles were carried out. The results show that when the width and the entrance angle of the mixing channel of the MMC is 0.4mm and 120 degree respectively, the working frequency is 200 Hz, and the entrance flow-rate is 3.5 mL/min, silver nanoparticles with average diameter of 29 nm are synthesized by the controllable microfluidic chip, with high productivity, fine morphology and good monodispersity, which demonstrate that the MMC has good mixing performance.

Key words: fluid transmission and control, piezoelectric actuation, three-phase flow, pulsating mixing, silver nanoparticles

CLC Number: 

  • TN384
[1] Manz A, Graber N, Widmer H M.Miniaturized total chemical analysis systems:a novel concept for chemical sensing[J]. Sensors & Actuators B: Chemical, 1990, 1(1-6):244-248.
[2] Yeh S I, Sheen H J, Yang J T.Chemical reaction and mixing inside a coalesced droplet after a head-on collision[J]. Microfluidics & Nanofluidics, 2015, 18(5):1355-1363.
[3] Huang H, Densmore D.Integration of microfluidics into the synthetic biology design flow[J]. Lab on A Chip, 2014, 14(18):3459-3474.
[4] Espulgar W, Yamaguchi Y, Aoki W, et al.Single cell trapping and cell-cell interaction monitoring of cardiomyocytes in a designed microfluidic chip[J]. Sensors & Actuators B: Chemical, 2015, 207(A):43-50.
[5] Zhang Y, Zhang X, Zhang J, et al.Microfluidic chip for isolation of viable circulating tumor cells of hepatocellular carcinoma for their culture and drug sensitivity assay[J]. Cancer Biology & Therapy, 2016, 17(11):1177-1187.
[6] Yang Z, Matsumoto S, Goto H, et al.Ultrasonic micromixer for microfluidic systems[J]. Sensors & Actuators A: Physical, 2001, 93(3): 266-272.
[7] Yang S Y, Lin J L, Lee G B.A vortex-type micromixer utilizing pneumatically driven membranes[J]. Journal of Micromechanics & Microengineering, 2009, 19(3):035020.
[8] Sun C L, Sie J Y.Active mixing in diverging microchannels[J]. Microfluidics & Nanofluidics, 2010, 8(4):485-495.
[9] Zeng Q, Guo F, Yao L, et al.Milliseconds mixing in microfluidic channel using focused surface acoustic wave[J]. Sensors & Actuators B: Chemical, 2011, 160(1):1552-1556.
[10] Veldurthi N, Chandel S, Bhave T, et al.Computational fluid dynamic analysis of poly (dimethyl siloxane) magnetic actuator based micromixer[J]. Sensors & Actuators B: Chemical, 2015, 212:419-424.
[11] Lin C H, Tsai C H, Fu L M.A rapid three-dimensional vortex micromixer utilizing self-rotation effects under low Reynolds number conditions[J]. Journal of Micromechanics & Microengineering, 2005, 15(5):935-943.
[12] Alam A, Kim K Y.Mixing performance of a planar micromixer with circular chambers and crossing constriction channels[J]. Sensors & Actuators B: Chemical, 2013, 176(1):639-652.
[13] Sugnao K, Uchida Y, Ichihashi O, et al.Mixing speed-controlled gold nanoparticle synthesis with pulsed mixing microfluidic system[J]. Microfluidics & Nanofluidics, 2010, 9(6):1165-1174.
[14] 赵天,刘国君,刘建芳. 利用压电微泵驱动和脉动混合可控合成金纳米粒子[J]. 光学精密工程, 2014, 22(4):904-910.
Zhao Tian, Liu Guo-jun, Liu Jian-fang.Controlled synthesis of gold nanoparticles based on PZT micropump and pulsating mixing[J]. Optics and Precision Engineering, 2014, 22(4):904-910.
[15] 刘国君,杨旭豪,刘建芳. 压电驱动脉动混合可控合成金纳米粒子[J]. 稀有金属材料与工程, 2016, 45(6):1625-1630.
Liu Guo-jun, Yang Xu-hao, Liu Jian-fang.Controlled synthesis of gold nanoparticles using pulsed mixing based on piezoelectric actuation[J]. Rare Metal Materials and Engineering, 2016, 45(6):1625-1630.
[16] Liu Guo-jun, Yang Xu-hao, Liu Jian-fang.Continuous flow controlled synthesis of gold nanoparticles using pulsed mixing microfluidic system[J]. Advances in Materials Science & Engineering,2015(3): 1-11.
[17] 刘国君,赵天,王聪慧,等. Y型微混合器结构与工作参数在两相脉动混合中优化[J]. 吉林大学学报:工学版, 2015, 45(4):1155-1161.
Liu Guo-jun, Zhao Tian, Wang Cong-hui,et al.Optimization of structure and working parameters of Y type micro-mixer in two-phase pulsating mixing[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 45(4): 1155-1161.
[18] Xu L, Peng J, Yan M, et al.Droplet synthesis of silver nanoparticles by a microfluidic device[J]. Chemical Engineering & Processing Process Intensification, 2016, 102:186-193.
[19] Hafermann L, Köhler J M.Small gold nanoparticles formed by rapid photochemical flow-through synthesis using microfluid segment technique[J]. Journal of Nanoparticle Research, 2015, 17(2):1-8.
[1] LIU Jian-fang, WANG Ji-bo, LIU Guo-jun, LI Xin-bo, LIANG Shi-hai, YANG Zhi-gang. PMMA micromixer embedded with 3D channel based on piezoelectric actuation [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1500-1507.
[2] LIU Xiang-yong, LI Wan-li. Electro-hydraulic proportional control model of accumulator [J]. 吉林大学学报(工学版), 2018, 48(4): 1072-1084.
[3] LIU Guo-jun, ZHANG Yan-yan, YANG Xu-hao, LI Xin-bo, LIU Jian-fang, YANG Zhi-gang. Application of surface acoustic wave in controlled synthesis of gold nanoparticles [J]. 吉林大学学报(工学版), 2017, 47(4): 1102-1108.
[4] WEN De-sheng, CHEN Fan, ZHEN Xin-shuai, ZHOU Cong, WANG Jing, SHANG Xu-dong. Application of pressure control loop with double-stator pumps and motors [J]. 吉林大学学报(工学版), 2017, 47(2): 504-509.
[5] WEN De-sheng, LIU Qiao-yan, LIU Zhong-xun, GAO Jun-feng, ZHOU Rui-bin. Rotor radial force of double-stator single-acting motor [J]. 吉林大学学报(工学版), 2015, 45(6): 1825-1830.
[6] WEN De-sheng, ZHENG Zhen-quan, WANG Yuan, YANG Jie, ZHANG Kai-ming, ZHANG San-xi. Analysis of rotational speed and torque of differential connection of asymmetric multi-speed hydraulic motor [J]. 吉林大学学报(工学版), 2014, 44(5): 1342-1346.
[7] MA Wen-xing,HU Jing,CHU Ya-xu,WANG Song-lin,WU Yue-shi. Dynamic load strength analysis of over-running clutch of dual turbine torque [J]. 吉林大学学报(工学版), 2014, 44(3): 675-679.
[8] MA Wen-xing, SONG Jian-jun, LIU Chun-bao, HU Jing, CHU Ya-xu. Calculation method of outlet pressure of open-type hydrodynamic retarder [J]. 吉林大学学报(工学版), 2014, 44(01): 86-90.
[9] YUAN Zhe, MA Wen-xing, LU Xiu-quan, HU Jing, YANG Shan-shan. Dynamic braking performance prediction and analysis of hydrodynamic retarder [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 160-164.
[10] YUAN Zhe, MA Wen-xing, LIU Chun-bao, LIU Hao. Temperature field analysis of the open-type hydrodynamic retarder of heavy vehicle [J]. 吉林大学学报(工学版), 2013, 43(05): 1271-1275.
[11] LIU Shu-cheng, WEI Wei, YAN Qing-dong, ZHOU Qia. Simulation method of idling characteristic of hydrodynamic torque converter stator wheel [J]. 吉林大学学报(工学版), 2013, 43(01): 22-27.
[12] YAN Qing-dong, ZOU Bo, WEI Wei. Numerical investigation of brake performance of hydrodynamic tractor-retarder assembly [J]. 吉林大学学报(工学版), 2012, 42(01): 91-97.
[13] LIU Cheng-qiang, JIANG Ji-hai. Flow characteristic of inclined plate and axial plunger type hydraulic transformer [J]. 吉林大学学报(工学版), 2012, 42(01): 85-90.
[14] QI Pan-guo, WANG Hui, HAN Jun-wei. Structured singular value-synthesis based robust control of hydraulic control loading system [J]. 吉林大学学报(工学版), 2011, 41(4): 1004-1009.
[15] LU Xiu-quan,CHU Ya-xu,CAI Wei,MA Wen-xing,SONG Jian-jun. Predicting method for partial-filling performance of hydrodynamic retarder based on one-dimensional flow beam theory [J]. 吉林大学学报(工学版), 2011, 41(4): 988-992.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Song-shan, WANG Qing-nian, WANG Wei-hua, LIN Xin. Influence of inertial mass on damping and amplitude-frequency characteristic of regenerative suspension[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] CHU Liang, WANG Yan-bo, QI Fu-wei, ZHANG Yong-sheng. Control method of inlet valves for brake pressure fine regulation[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] LI Jing, WANG Zi-han, YU Chun-xian, HAN Zuo-yue, SUN Bo-hua. Design of control system to follow vehicle state with HIL test beach[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] ZHU Jian-feng, LIN Yi, CHEN Xiao-kai, SHI Guo-biao. Structural topology optimization based design of automotive transmission housing structure[J]. 吉林大学学报(工学版), 2013, 43(03): 584 -589 .
[5] HU Xing-jun, LI Teng-fei, WANG Jing-yu, YANG Bo, GUO Peng, LIAO Lei. Numerical simulation of the influence of rear-end panels on the wake flow field of a heavy-duty truck[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[6] WANG Tong-jian, CHEN Jin-shi, ZHAO Feng, ZHAO Qing-bo, LIU Xin-hui, YUAN Hua-shan. Mechanical-hydraulic co-simulation and experiment of full hydraulic steering systems[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[7] ZHANG Chun-qin, JIANG Gui-yan, WU Zheng-yan. Factors influencing motor vehicle travel departure time choice behavior[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[8] MA Wan-jing, XIE Han-zhou. Integrated control of main-signal and pre-signal on approach of intersection with double stop line[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[9] YU De-xin, TONG Qian, YANG Zhao-sheng, GAO Peng. Forecast model of emergency traffic evacuation time under major disaster[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[10] XIAO Yun, LEI Jun-qing, ZHANG Kun, LI Zhong-san. Fatigue stiffness degradation of prestressed concrete beam under multilevel amplitude cycle loading[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .