Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (2): 501-510.doi: 10.13229/j.cnki.jdxbgxb20200037

Previous Articles    

Effect of spot diameteron corrosion resistance of aluminum alloy subjected to laser shock peening

Kai-yu LUO1,2(),Jun-cheng CHEN1,Chang-yu WANG1,Jin-zhong LU1   

  1. 1.School of Mechanical Engineering,Jiangsu University,Zhenjiang 212013,China
    2.College of Engineering Technology,Jiangsu University,Zhenjiang 212013,China
  • Received:2020-01-14 Online:2021-03-01 Published:2021-02-09

Abstract:

In order to investigate the effect of different spot diameters on the electrochemical corrosion resistance of 6061-T6 aluminum alloy subjected to laser shock peening, the surface roughness and residual stress of the alloy were measured. The cross-sectional metallographic and electrochemical corrosion experiments were carried out. Corroded specimens were observed and analyzed by scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). Results show that laser shock peening refines the surface grains of 6061-T6 alloy, increases the surface roughness and generates a compressive residual stress. The corrosion current densities of the untreated specimen, treated specimens with 2 mm and 3 mm spot diameters were 154.5 μA/cm2, 14.70 μA/cm2 and 11.17 μA/cm2, respectively, indicating that laser shock peening effectively improves the corrosion resistance. The treated specimen with 2 mm spot diameter had worse surface topographies than that of the treated specimen with 3 mm spot diameter, resulting in the lower corrosion resistance.

Key words: laser shock peening, aluminum alloy, electrochemical corrosion, surface roughness, residual stress

CLC Number: 

  • TN249

Fig.1

Schematic illustration of LSPed region"

Fig.2

Surface residual stress of untreated and different LSPed specimens"

Table 1

Surface roughness of different laser shock peening"

试样Ra(x)Ra(x)ˉRa(y)Ra(y)ˉRaˉ
测量1测量2测量3测量1测量2测量3
未冲击-01.8311.9221.7551.8361.8021.7691.8651.8191.828
未冲击-11.7021.8101.9171.8101.8851.9571.8011.8811.846
LSP-2 mm-02.4922.6022.5902.5612.4382.7392.4802.5522.557
LSP-2 mm-12.5902.4822.6042.5592.5182.6202.5052.5472.553
LSP-3 mm-02.0351.9022.2692.0692.1272.0172.1752.1362.103
LSP-3 mm-12.1132.0632.0892.0882.1852.1042.2272.1722.130

Fig.3

Cross-section OM morphologies of the LSP-2 mm specimen"

Fig.4

Cross-section OM morphologies of LSP-3 mm"

Fig.5

Time dependence of open circuit potential for different Aluminum specimens in 3.5% NaCl solution"

Fig.6

Typical Nyquist plots of different Aluminum specimens in 3.5% NaCl solution."

Fig.7

Potentiodynamic polarization curves of different Aluminum specimen in 3.5% NaCl solution."

Table 2

Different corrosion parameters obtained from polarization curves in Fig.7"

试样自腐蚀电位/(V vs.SCE)点蚀电位/ (V vs.SCE)钝化电位/ (V vs.SCE)自腐蚀电流密度/(μA·cm-2)
未冲击-1.276-0.669-1.056154.5
LSP-2 mm-1.216-0.698-1.09814.70
LSP-3 mm-1.192-0.671-0.85111.17

Fig.8

Surface morphology of untreated specimens after electrochemical corrosion"

Fig.9

Surface morphology of LSP-2 mm specimens after electrochemical corrosion"

Fig.10

Surface morphology of LSP-3 mm specimens after electrochemical corrosion"

Fig.11

Energy spectrum composition analysis diagram"

Fig.12

Schematic illustration of electrochemical corrosion reaction of as-machined and different LSPed specimens in 3.5% NaCl solution"

1 Salimianrizi A, Foroozmehr E, Badrossamay M, et al. Effect of laser shock peening on surface properties and residual stress of Al6061-T6[J]. Optics and Lasers in Engineering, 2016, 77: 112-117.
2 缪宏, 左敦稳, 王珉, 等.喷丸强化对NAK80钢表面完整性的影响[J]. 吉林大学学报: 工学版, 2011, 41(5): 1290-1294.
Miao Hong, Zuo Dun-wen, Wang Min, et al. Effect of shot peening on surface integrity of NAK80 steel[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(5): 1290-1294.
3 Sun Q Q, Han Q Y, Xu R, et al. Localized corrosion behaviour of AA7150 after ultrasonic shot peening:Corrosion depth vs. impact energy[J]. Corrosion Science,2018, 130: 218-230.
4 汪志太, 林鑫, 曹永青, 等.外部冷却条件对激光熔凝Ni-Sn合金反常共晶形成的影响[J]. 中国激光, 2014, 41(12): 91-96.
Wang Zhi-tai, Lin Xin, Cao Yong-qing, et al. External cooling condition effects on formation of anomalous eutectic in Ni-Sn alloy by laser remelting[J]. Chinese J Lasers, 2014, 41(12): 91-96.
5 罗开玉, 邢月华, 柴卿锋, 等. 激光冲击强化对2Cr13不锈钢腐蚀疲劳性能的影响[J]. 吉林大学学报: 工学版, 2019, 49(3): 850-858.
Luo Kai⁃yu, Xing Yue⁃hua, Chai Qing⁃feng, et al. Effect of laser shock peening on corrosion fatigue behaviour of 2Cr13 stainless steel[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(3): 850-858.
6 吴边, 王声波, 郭大浩, 等. 激光冲击铝合金改性处理研究[J]. 光学学报, 2005, 25(10): 1352-1356.
Wu Bian, Wang Sheng-bo, Guo Da-hao, et al. Research of material modification induced by laser s hock processing on aluminum alloy[J]. Acta Optica Sinica, 2005, 25(10):1352-1356.
7 周建忠, 刘会霞, 冯爱新, 等. 激光冲击波技术用材料加工的研究进展[J]. 应用激光, 2005, 25(1): 27-31, 44.
Zhou Jian-zhong, Liu Hui-xia, Feng Ai-xin, et al. Advances on the application of laser induced shock wave in metal processing[J]. Applied Laser, 2005, 25(1): 27-31, 44.
8 张青来, 王荣, 张冰昕, 等. 激光冲击强化对AZ31镁合金力学性能和组织结构的影响[J]. 中国激光, 2015, 42(3): 39-45.
Zhang Qing-lai, Wang Rong, Zhang Bing-xin, et al. Effect of laser shock processing on mechanical properties and microstructures of AZ31 magnesium alloy[J]. Chinese J Lasers, 2015, 42(3): 39-45.
9 汪诚, 赖志林, 何卫锋, 等. 激光冲击次数对1Cr11Ni2W2MoV不锈钢高周疲劳性能的影响[J]. 中国激光, 2014, 41(1): 46-51.
Wang Cheng, Lai Zhi-lin, He Wei-feng, et al. Effect of multi-impact on high cycle fatigue properties of 1Cr11Ni2W2MoV stainless steel subject to laser shock processing[J]. Chinese J Lasers, 2014, 41(1): 46-51.
10 王江涛, 张永康, 陈菊芳, 等. 激光冲击对7075铝合金等离子弧焊接头电化学腐蚀行为的影响[J]. 中国激光, 2015, 42(12): 106-115.
Wang Jiang-tao, Zhang Yong-kang, Chen Ju-fang, et al. Effect of laser shock processing on electrochemical corrosion behavior of 7075 aluminum alloy plasma arc weldments[J]. Chinese J Lasers, 2015, 42(12): 106-115.
11 邢清蒲, 张凌峰, 李少哲, 等. 激光冲击强化对2A02铝合金电化学腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2013, 25(5): 402-405.
Xing Qing-pu, Zhang Ling-feng, Li Shao-zhe, et al. Effect of laser shock processing on electrochemical corrosion behavior of 2A02 Aluminum alloy[J]. Corrosion Science and Protection Technology, 2013, 25(5): 402-405.
12 宁成义, 黄亿辉, 张广义, 等. 激光冲击强化6061铝合金耐磨性能及电化学性能的实验研究[J]. 激光与光电子学进展, 2018, 55(6): 254-259.
Ning Cheng-yi, Huang Yi-hui, Zhang Guang-yi, et al. Experimental study of wear resistance and eletrochemical corrosion properties of 6061 aluminum alloy treated by laser shock peening[J].China Academic Journal Electronic Publishing House, 2018, 55(6): 254-259.
13 Trdan U, Grum J. Evaluation of corrosion resistance of AA6082-T651 aluminium alloy after laser shock peening by means of cyclic polarisation and EIS methods[J]. Corrosion Science, 2012, 59: 324-333.
14 Luo K Y, Wang C Y, Sun G F, et al. Investigation and microstructural analyses of massive LSP impacts with coverage area on crack initiation location and tensile properties of AM50 magnesium alloy[J]. Materials Science Engineering A, 2016, 650: 110-118.
15 Luo K Y, Wang C Y, Cui C Y, et al. Effects of coverage layer on the electrochemical corrosion behaviour of Mg-Al-Mn alloy subjected to massive laser shock peening treatment[J]. Journal of Alloys and Compounds, 2018, 782: 1058-1075.
16 Zhao X Y, Chen X, Wang X. Effect of aging processes on corrosion behavior and stress corrosion sensitivity of pre-stretched 7075 aluminum alloy[J]. Material and Corrosion, 2018, 69(7): 850-857.
17 Torbati-Sarraf H, Stannard T J, Plante E C L, et al. Direct observations of microstructure-resolved corrosion initiation in AA7075-T651 at the nanoscale using vertical scanning interferometry (VSI)[J]. Materials Characterization, 2020, 161: 110166.
18 Yang Y, Zhou W F, Tong Z P, et al. Electrochemical corrosion behavior of 5083 aluminum alloy subjected to laser shock peening[J]. Journal of Materials Engineering and Performance, 2019, 28(10): 1-11.
19 Lee H S, Kim D S, Jung J S, et al. Influence of peening on the corrosion properties of AISI 304 stainless steel[J]. Corrosion Science, 2009, 51(12): 2826-2830.
[1] Ji-cai LIANG,Yan-fei LIAO,Fei TENG,Ce LIANG,Yi LI. Rectangular section profile thinning rate of three-dimensional multi-point stretch bending process [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 163-171.
[2] Chun-guo LIU,Xiao-tong YU,Tao YUE,Dong-lai LI,Ming-zhe ZHANG. Springback prediction for double-curvature stiffened panel during milling [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 188-199.
[3] Wen-biao GONG,Rui ZHU,Xin-zhe QIE,Heng CUI,Ming-yue GONG. Microstructure and properties of 6082 aluminum alloyultra⁃thick plate preparated by friction stir weld [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 512-519.
[4] Xiao-yu HU,Guo-xiang LI,Shu-zhan BAI,Ke SUN,Si-yuan LI. Modified boiling heat transfer model considering roughness and material of heating surface [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1945-1950.
[5] Yi-lun LIU,Qing WANG,Chi LIU,Song-bai LI,Jun HE,Xian-qiong ZHAO. Effect of creep and artificial aging on fatigue crack growth performance of 2524 aluminum alloy [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1636-1643.
[6] Wu⁃jiao XU,Cheng⁃shang LIU,Xin⁃yao LU. Simulation and prediction of surface roughness of 6061 aluminum alloy workpiece after shot peening [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1280-1287.
[7] Jin⁃zhong LU,Wan⁃ting ZHOU,Sheng⁃yang ZHANG,Yi⁃kai SHAO,Chang⁃yu WANG,Kai⁃yu LUO. Effect of coverage layer on corrosion resistance of 6061⁃T6 aluminum alloy subjected to laser shock peening [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 842-849.
[8] Yu⁃peng LI,Da⁃qian SUN,Wen⁃biao GONG. Temperature fields in bobbin⁃tool friction stir welding for 6082⁃T6 aluminum alloy sheet [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 836-841.
[9] Kai⁃yu LUO,Yue⁃hua XING,Qing⁃feng CHAI,Shi⁃kai WU,Ye⁃fang YIN,Jin⁃zhong LU. Effects of laser shock peening on corrosion fatigue behaviour of 2Cr13 stainless steel [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 850-858.
[10] ZHAO Shuang,SHEN Ji-hong,ZHANG Liu,ZHAO Han,CHEN Ke-fan. Evaluation of surface roughness of micro electrical discharge machining based-on fast Gauss algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1838-1843.
[11] HU Zhi-qing, YAN Ting-xu, LI Hong-jie, LYU Zhen-hua, LIAO Wei, LIU Geng. Effect of cryogenic treatment on punch-shearing performance of aluminum alloy sheet [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1524-1530.
[12] LIU Zi-wu, LI Jian-feng. Erosion damage and evaluation of remanufacturing cladding layer for impeller metals FV520B [J]. 吉林大学学报(工学版), 2018, 48(3): 835-844.
[13] HU Zhi-qing, ZHENG Hui-hui, XU Ya-nan, ZHANG Chun-ling, DANG Ting-ting. Effect of Al surface with micro/macro grooves on Al/CFRP adhesive-bonded joints [J]. 吉林大学学报(工学版), 2018, 48(1): 229-235.
[14] FU Wen-zhi, LIU Xiao-dong, WANG Hong-bo, YAN De-jun, LIU Xiao-li, LI Ming-zhe, DONG Yu-qi, ZENG Zhen-hua, LIU Gui-bin. Multi-point forming process of 1561 aluminum alloy surfaces [J]. 吉林大学学报(工学版), 2017, 47(6): 1822-1828.
[15] CHEN Chao, ZHAO Sheng-dun, CUI Min-chao, HAN Xiao-lan, FAN Shu-qin, ISHIDA Tohru. Experimental study on reshaping method for joining AL5052 aluminum alloy sheets [J]. 吉林大学学报(工学版), 2017, 47(5): 1512-1518.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!