Journal of Jilin University(Engineering and Technology Edition) ›› 2020, Vol. 50 ›› Issue (2): 512-519.doi: 10.13229/j.cnki.jdxbgxb20190241

Previous Articles    

Microstructure and properties of 6082 aluminum alloyultra⁃thick plate preparated by friction stir weld

Wen-biao GONG1(),Rui ZHU1,Xin-zhe QIE1,Heng CUI2,Ming-yue GONG2   

  1. 1.Key Laboratory of Advanced Structural Materials, Ministry of Education, Changchun University of Technology, Changchun 130012, China
    2.Changchun Railway Vehicles Co. Ltd. , Changchun 130062, China
  • Received:2019-03-14 Online:2020-03-01 Published:2020-03-08

Abstract:

The double-sided of friction stir butt welding was carried out on the 6082-T4 aluminum alloys with thickness of 84 mm , and artificial aging (180 ℃×5 h) was applied after welding. The microstructure and mechanical properties of welded joints along the thickness direction were studied. The results indicate that the microstructure of the Welding Nugget Zone (WNZ) is fine equiaxed grains. From the surface of the plate to the center of welding seam, the grain sizes are 16 μm, 13 μm, and 5 μm, respectively, and the proportions of high angle grain boundaries are 77.2%, 76.3%, and 72.5%, respectively. The strengthening phase of WNZ is mainly "GP zone" and β″. The grain of the Thermo-Mechanically Affected Zone (TMAZ) is elongated and there is a high density dislocation. The microhardness in the thickness direction indicates that the hardness curve of the center overlap area of the weld is "V" type, the lowest hardness value appears in the double-sided welding overlap area, while the hardness curve of the other area is "W" type,. The samples are all broken in the area where TMAZ and Heat Affected Zone (HAZ) meet. The tensile strengths from the surface to the center overlap in the thickness direction are 211 MPa, 201 MPa, and 180 MPa, which gradually decrease. The center overlap zone has the lowest tensile strength, but its elongation is the highest, which is about 69% of the base metal. The fracture surfaces were distributed with dimples of different sizes, and fractures in all tensile specimens were ductile fracture.

Key words: metallic materials, 6082 aluminum alloy, friction stir welding, ultra-thickness plate, microstructure, propertie

CLC Number: 

  • TG456.9

Fig.1

Distribution of microhardness experimental positions"

Fig.2

Macroscopic morphology of weld cross section"

Fig.3

Optical microscopic morphology of "S" line"

Fig.4

Optical microstructure of different regions of FSW joint"

Fig.5

EBSD maps of microstructure at various depths in WNZ"

Fig.6

Misorientation angle distribution at various depths in the WNZ"

Fig.7

TEM images of friction stir welded joint"

Fig.8

Microhardness profiles of welded joint along welding thickness direction"

Fig.9

Tensile test results of FSW joints"

Fig.10

SEM image of tensile fracture of welded joint"

Fig.11

Bending shape of FSW joint"

1 牛得田. 铝合金车体在轨道车辆上的应用及展望[J]. 机车车辆工艺, 2003(3): 1-2.
Niu De-tian. Application of Al alloy carbody to railway vehicles and its prospects[J]. Locomotive & Rolling Stock Technology, 2003(3): 1-2.
2 盛建辉, 彭家仁, 李光, 等. 搅拌摩擦焊工艺及其在地铁铝合金车体上的应用[J]. 电力机车与城轨车辆, 2009, 32(3): 28-31.
Sheng Jian-hui,Peng Jia-ren, Li Guang, et al. Friction stir welding technology and its application on metro aluminum alloy car body[J]. Electric Locomotive and the Urban Rail Vehicles, 2009, 32(3): 28-31.
3 杨悦, 周磊磊. 微弧氧化对铝合金搅拌摩擦焊缝耐蚀性能的影响[J]. 吉林大学学报: 工学版, 2016, 46(2): 511-515.
Yang Yue,Zhou Lei-lei. Effect of micro-arc oxidation treatment on corrosion resistance of aluminum friction stir welding welds[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(2): 511-515.
4 黎俊初, 周德生, 刘大海, 等. 2A12铝合金筋板件T型搅拌摩擦焊工艺及焊后热处理[J]. 材料科学与工艺, 2011, 19(2): 80-85, 91.
Li Jun-chun, Zhou De-sheng, Liu Da-hai, et al. Friction stir welding and successive heat treatment of T-shaped rib-web parts of 2A12 aluminium alloy[J]. Materials Science &Technology, 2011, 19(2): 80-85, 91.
5 杨模聪, 孙中刚, 马锐, 等. 2060搅拌摩擦焊对接接头显微组织与析出相分析[J]. 材料科学与工艺, 2014, 22(5): 119-123.
Yang Mo-cong, Sun Zhong-gang, Ma Rui, et al. Analysis for microstricture and precipitation phase evolution of friction stir welding 2060 butt jiont[J]. Materials Science and Technology, 2014, 22(5): 119-123.
6 张秋征, 宫文彪, 刘杰. 6005A-T6铝合金厚板单面与双面搅拌摩擦焊的性能比较[J]. 材料热处理学报, 2014, 35(6): 75-79.
Zhang Qiu-zheng, Gong Wen-biao, Liu Jie. Property comparison of aluminum alloy 6005A-T6 thick plate by single-sided and double-sided processes of friction stir welding[J]. Transactions of Materials and Heat Treatment, 2014, 35(6): 75-79.
7 罗维, 贺地求, 邬红光, 等. 22 mm 6061-T6铝合金板的搅拌摩擦焊接[J]. 金属铸锻焊技术, 2010, 39(15): 130-132.
Luo Wei, He Di-qiu, Wu Hong-guang, et al. Friction stir welding of 22 mm plate of 6061-T6 aluminum alloy plate[J]. Casting Forging Welding, 2010, 39(15): 130-132.
8 Ma Z, Chen D, Liu H, et al. Microstructure and properties of welding joints of 30 mm thickness 7A52 aluminum alloy plate by friction stir welding[J]. Ordnance Material Science & Engineering, 2014, 37(2): 63-65.
9 He D, Luo W, Wu H. Microstructure and mechanical property analysis on double-sided friction stir welding joints of 60 mm 6061-T6 aluminum alloy plate[J]. Journal of Materials Engineering, 2011, 1(9): 20-24.
10 Zhang Z, Xiao B L, Ma Z Y. Effect of segregation of secondary phase particles and “S” line on tensile fracture behavior of friction stir-welded 2024Al-T351 joints[J]. Metallurgical & Materials Transactions A, 2013, 44(9): 4081-4097.
11 Di S, Yang X, Fang D, et al. The influence of zigzag-curve defect on the fatigue properties of friction stir welds in 7075-T6 Al alloy[J]. Materials Chemistry & Physics, 2007, 104(2/3): 244-248.
12 Okamura H, Aota K, Sakamoto M, et al. Behavior of oxides during friction stir welding of aluminum alloy and their effect on its mechanical properties[J]. Welding International, 2002, 16(4): 266-275.
13 Scialpi A, Filippis L A C D, Cavaliere P. Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminum alloy[J]. Material & Design, 2007, 28(4): 1124-1129.
14 Adamowski J, Szkodo M. Friction stir welds(FSW) of aluminum alloy AW6082-T6[J]. Journal of Achievements in Materials and Manufacturing Engineering, 2007, 20(1/2): 403-406.
15 Xu W F, Liu J H. Microstructure evolution along thickness in double-side friction stir welded 7085 Al alloy[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(10): 3212-3222.
16 Yadav D, Bauri R. Effect of friction stir processing on microstructure and mechanical properties of aluminium[J]. Materials Science & Engineering A, 2012, 539: 85-92.
17 Denquin A, Allehaux D, Campagnac M H, et al. Relationship between microstructural variations and properties of a friction stir welded 6056 aluminum alloy[J]. Welding in the World, 2002, 46(11/12): 14-19.
18 李于朋, 孙大千, 宫文彪. 6082-T6铝合金薄板双轴肩搅拌摩擦焊温度场[J]. 吉林大学学报: 工学版, 2019, 49(3): 836-841.
Li Yu-peng, Sun Da-qian, Gong Wen-biao. Temperature fields in bobbin-tool friction stir welding for 6082-t6 aluminum alloy sheet[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(3): 836-841.
19 Andersen S J, Zandbergen H W, Jansen J, et al. The crystal structure of the β'' phase in Al-Mg-Si alloys[J]. Acta Materialia, 2007, 46(9): 3283-3298.
20 王冰. 6082-T6铝合金搅拌摩擦焊接头微观组织及力学性能的研究[D]. 长春: 吉林大学材料科学与工程学院, 2015.
Wang Bing. Study on microstructures and mechanical properties of friction stir welding joints of 6082-T6 aluminum alloy[D]. Changchun: College of Materials Science and Engineering, Jilin University, 2015.
21 Murayama M, Hono K. Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys[J]. Acta Materialia, 1999, 47(5): 1537-1548.
22 王希靖, 魏学玲, 张亮亮. 6082-T6铝合金搅拌摩擦焊组织演变与力学性能[J]. 焊接学报, 2018, 39(3): 1-5.
Wang Xi-jing, Wei Xue-ling, Zhang Liang-liang. Microstructure evolution and mechanical properties of 6082-T6 Al alloy friction stir welding[J]. Transactions of the China Welding Institution, 2018, 39(3): 1-5.
[1] Jin-guo WANG,Shuai REN,Rui-fang YAN,Kai HUANG,Zhi-qiang WANG. Effect of TiC particles on microstructure and mechanical properties of as cast ductile iron [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2010-2018.
[2] De-lei YANG,Le-wei TONG. Calculation formula of SCF for CHS⁃CFSHS welded T⁃joints with brace under axial tension [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1891-1899.
[3] Ming LI,Hao-ran WANG,Wei-jian ZHAO. Mechanical properties of laminated slab with shear keys [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1509-1520.
[4] Xin TONG,Ya-jiao ZHANG,Yu-shan HUANG,Zheng-zheng HU,Qing WANG,Zhi-hui ZHANG. Microstructure and mechanical properties of 304L stainless steel processed by selective laser melting [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1615-1621.
[5] Jin⁃zhong LU,Wan⁃ting ZHOU,Sheng⁃yang ZHANG,Yi⁃kai SHAO,Chang⁃yu WANG,Kai⁃yu LUO. Effect of coverage layer on corrosion resistance of 6061⁃T6 aluminum alloy subjected to laser shock peening [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 842-849.
[6] Na WU,Jian ZHUANG,Ke⁃song ZHANG,Hui⁃xin WANG,Yun⁃hai MA. Compression mechanical properties and fracture mechanism of Scapharca Subcrenata shell [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 897-902.
[7] Yu⁃peng LI,Da⁃qian SUN,Wen⁃biao GONG. Temperature fields in bobbin⁃tool friction stir welding for 6082⁃T6 aluminum alloy sheet [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 836-841.
[8] JIANG Qiu-yue,YANG Hai-feng,TAN Cai-wang. Strengthening properties of welded joints of 22MnB5 super high strength steel [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1806-1810.
[9] ZHENG Xiao-yi, SUN Da-qian, LI Xin, DU Gui-gang, XIN Wei-da, REN Zhen-an. Microstructure and properties of cladded Al-Nb layers reinforced by NbAl3 [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1531-1536.
[10] ZHAO Yu-guang, YANG Xue-hui, XU Xiao-feng, ZHANG Yang-yang, NING Yu-heng. Effects of Al-10Sr modifiers with different states, modification temperature and holding time on microstructure of ZL114A alloy [J]. 吉林大学学报(工学版), 2018, 48(1): 212-220.
[11] ZHANG Zhi-qiang, LIU Cong-hao, HE Dong-ye, LI Xiang-ji, LI Ji-xuan. Effect of hot stamping process of boron steel on shape precision based on performance gradient distribution [J]. 吉林大学学报(工学版), 2017, 47(6): 1829-1833.
[12] TANG Hua-guo, MA Xian-feng, ZHAO Wei, LIU Jian-wei, ZHAO Zhen-ye. Synthesis microstructure and thermal properties of high performance bulk Al [J]. 吉林大学学报(工学版), 2017, 47(5): 1542-1547.
[13] CUI Ya-nan, HAN Ji-wei, FENG Lei, LI Jia-di, WANG Le. Microstructure of asphalt under salt freezing cycles [J]. 吉林大学学报(工学版), 2017, 47(2): 452-458.
[14] GUAN Qing-feng, HUANG Wei, LI Huai-fu, GONG Xiao-hua, ZHANG Cong-lin, LYU Peng. Diffusion alloying of Cu-C induced by high current pulsed electron beam [J]. 吉林大学学报(工学版), 2016, 46(6): 1967-1973.
[15] ZHOU Feng-dao, WANG Shuang, HAN Si-yu, XU Fei, LIAN Shi-bo, SUN Cai-tang. Improved quadrature detection algorithm for controlled source electromagnetic detection [J]. 吉林大学学报(工学版), 2016, 46(6): 2128-2136.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!