Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (8): 1808-1816.doi: 10.13229/j.cnki.jdxbgxb20210197

Previous Articles    

Wheel⁃load diffusion effect on orthotropic steel⁃concrete composite bridge deck

Hua-wen YE1(),Zhi-chao DUAN1,Ji-lin LIU1,Yu ZHOU1,Bing HAN2   

  1. 1.School of Civil Engineering,Southwest Jiaotong University,Chengdu 610031,China
    2.Southern Sichuan Intercity Railway Co. ,Ltd. ,Chengdu 610031,China
  • Received:2021-03-15 Online:2022-08-01 Published:2022-08-12

Abstract:

A theoretical model is proposed for the wheel-load diffusion to investigate the transmission mechanism of vertical loading on the steel-concrete composite bridge deck system under local wheel loads. An existed full-scale test model was referred and the corresponding finite element numerical simulation were also conducted to verify the presented model and analysis the key parameters. The results show that, rather than the traditional assumption of 45 degree diffusion effect, the pressure on the steel top plate of the composite deck under vehicle loads has a significant local effect along the transverse direction of U-rib, and the sharing law of the wheel load could be obtained from the 3-span beam simply supported by the webs of U-rib. The paramelric analysis shows that, the proposed theoretical model is conservative in the common value range of engineering parameter of orthotropic steel-concrete composite bridge deck, and it could be referred to the design of orthotropic composite bridge deck.

Key words: bridge engineering, orthotropic steel-concrete composite bridge deck, wheel load, diffusion angle, concrete overlay

CLC Number: 

  • U443.3

Fig.1

Model of 3-span simply supported beam"

Fig.2

Calculation model of wheel load sharing rate of steel bridge deck under typical working conditions"

Fig.3

Full-scale model for orthotropic steel-concrete composite bridge deck"

Fig.4

FE modelling for full-scale test model"

Fig.5

Transversal stress in midspan cross-section"

Fig.6

Transversal stress at cross-section C-C"

Fig.7

Comparison of experimental and numerical deflection"

Fig.8

Pressure distribution on the steel top plate"

Fig.9

Sharing ratios of the steel top plate"

Table 1

Effect of stud spacing and diameter"

栓钉间距

/mm

中心加载/%偏心加载/%栓钉直径 /mm中心加载/%偏心加载/%
δ1δ2δ1δ2δ1δ2δ1δ2
1509.6434.3723.2440.39910.1736.1925.2143.64
30010.0337.1324.5944.36139.6434.3723.2440.39
45010.5838.2526.0645.50179.8335.7524.7243.09
60011.3738.6625.2645.12259.6535.4024.4042.64

Fig.10

Effect of elastic modulus of concrete"

Fig.11

Effect of thickness of concrete overlay"

1 吉伯海. 我国缆索支承桥梁钢箱梁疲劳损伤研究现状[J]. 河海大学学报: 自然科学版, 2014, 42(5): 410-415.
Ji Bo-hai. The current research on cable bearing steel box girder bridge fatigue damage in china[J]. Journal of Hehai University(Natural Science Edition), 2014, 42(5): 410-415.
2 袁周致远,吉伯海,夏俊元,等. 钢箱梁横隔板-纵肋疲劳裂纹气动冲击维修试验[J/OL]. [2022-04-29],
3 陶晓燕. 正交异性钢桥面板节段模型疲劳性能试验研究[J]. 中国铁道科学, 2013, 34(4): 22-26.
Tao Xiao-yan. Experimental study on the fatigue performance of the section model of orthotropic steel bridge deck[J]. China Railway Science, 2013, 34(4): 22-26.
4 王春生, 付炳宁, 张芹, 等. 正交异性钢桥面板足尺疲劳试验[J]. 中国公路学报, 2013, 26(2): 69-76.
Wang Chun-sheng, Fu Bing-ning, Zhang Qin, et al. Fatigue test on full-scale orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2013, 26(2): 69-76.
5 张清华, 崔闯, 卜一之, 等. 港珠澳大桥正交异性钢桥面板疲劳特性研究[J]. 土木工程学报, 2014, 47(9): 110-119.
Zhang Qing-hua, Cui Chuang, Bu Yi-zhi, et al. Study on fatigue features of orthotropic decks in steel box girder of the hong kong-zhuhai-macao bridge[J]. China Civil Engineering Journal, 2014, 47(9): 110-119.
6 叶华文, 徐勋, 强士中, 等. 重庆两江大桥正交异性钢桥而板疲劳性能试验研究[J]. 中南大学学报: 自然科学版, 2013, 44(2): 749-756.
Ye Hua-wen, Xu Xun, Qiang Shi-zhong, et al. Fatigue test of orthotropic steel bridge deck in Chongqing liangjiang bridge[J]. Journal of Central South University(Science and Technology), 2013, 44(2): 749-756.
7 Sim Hyoung-Bo, Uang Chia-Ming. Stress analyses and parametric study on full-scale fatigue tests of rib-to-deck welded joints in steel orthotropic decks[J]. Journal of Bridge Engineering, 2012, 17(5): 765-773.
8 Shao Xu-dong, Yi Du-tao, Huang Zheng-yu, et al. Basic performance of the composite deck system composed of orthotropic steel deck and ultra-thin RPC layer[J]. Journal of Bridge Engineering, 2013, 18(5): 117-128.
9 祝志文, 黄炎, 文鹏翔, 等. 随机车流下钢-UHPC组合正交异性桥面疲劳性能研究[J]. 中国公路学报, 2017, 30(3): 200-209.
Zhu Zhi-wen, Huang Yan, Wen Peng-xiang, et al. Study on fatigue performance of steel-UHPC composite orthotropic bridge deck with random traffic flow[J]. China Journal of Highway and Transport, 2017, 30(3): 200-209.
10 苏庆田, 韩旭, 姜旭, 等. U形肋正交异性组合桥面板力学性能[J]. 哈尔滨工业大学学报, 2016, 48(9): 14-19.
Su Qing-tian, Han Xu, Jiang Xu, et al. Mechanical properties of U-rib orthotropic composite bridge panel[J]. Journal of Harbin Institute of Technology, 2016, 48(9): 14-19.
11 叶华文, 王应良, 张清华, 等. 新型正交异性钢-混组合桥面板足尺模型疲劳试验[J]. 哈尔滨工业大学学报, 2017, 49(9): 25-32.
Ye Hua-wen, Wang Ying-liang, Zhang Qing-hua, et al. Fatigue test of a new orthogonally hetero-steel composite bridge panel full scale model[J]. Journal of Harbin Institute of Technology, 2017, 49(9): 25-32.
12 黄卫. 大跨径桥梁钢桥面铺装设计[J]. 土木工程学报, 2007, 40(9): 65-77.
Huang Wei. Design of steel deck pavement of long-span bridge[J]. Journal of Civil Engineering, 2007, 40(9): 65-77.
13 赵延庆, 谭忆秋, 王国忠, 等. 黏弹性对沥青路面疲劳开裂的影响[J]. 吉林大学学报: 工学版, 2010, 40(3): 683-687.
Zhao Yan-qing, Tan Yi-qiu, Wang Guo-zhong, et al. Effect of viscoelasticity on fatigue cracking of asphalt pavement[J]. Journal of Jilin University(Engineering and Technology Edition), 2010, 40(3): 683-687.
14 邵旭东, 郑晗, 黄细军, 等. 钢-UHPC轻型组合桥面板横向受力性能[J]. 中国公路学报, 2017, 30(9): 70-77, 85.
Shao Xu-dong, Zheng Han, Huang Xi-jun, et al. Transverse mechanical properties of steel-UHPC lightweight composite bridge panel[J]. China Highway Journal, 2017, 30(9): 70-77, 85.
15 de Beer M. Determination of pneumatic tyre/pavement interface contact stresses under moving loads and some effects on pavements with thin asphalt surfacing layers[C]∥Washington International Society for Asphalt Pavement, Washington, USA, 1997: 179-227.
16 F B P. de Jong . Bijlaard. Renovation techniques for fatigue cracked orthotropic steel bridge decks[D]. Delft: School of Civil Engineering, Technische Universiteit Delft, 2006.
17 顾兴宇, 邓学钧, 周世忠, 等. 不同轮载对钢桥面沥青铺装层受力的影响[J]. 公路交通科技, 2002(2): 56-59.
Gu Xing-yu, Deng Xue-jun, Zhou Shi-zhong, et al. Influence of different wheel loads on the stress of asphalt pavement on steel bridge deck[J]. Road Traffic Technology, 2002(2): 56-59.
18 . 公路钢结构桥梁设计规范 [S].
19 吴冲, 刘海燕, 张胜利, 等. 桥面铺装对钢桥面板疲劳应力幅的影响[J]. 中国工程科学, 2010, 12(7): 39-42.
Wu Chong, Liu Hai-yan, Zhang Sheng-li, et al. Influence of bridge deck pavement on fatigue stress amplitude of steel bridge panel[J]. China Engineering Science, 2010, 12(7): 39-42.
20 王占飞, 程浩波, 程志彬, 等. 桥面铺装对正交异性钢桥面板疲劳性能的影响[J]. 沈阳建筑大学学报: 自然科学版, 2018, 34(2): 257-266.
Wang Zhan-fei, Cheng Hao-bo, Cheng Zhi-bin, et al. Influence of bridge deck pavement on the fatigue performance of orthogonally opposite-sex steel bridge [J]. Journal of Shenyang Jianzhu University(Natural Science Edition), 2018, 34(2): 257-266.
21 毛瑞祥, 程翔云. 公路桥涵设计手册: 基本资料[M]. 北京: 人民交通出版社, 1993.
[1] Li-feng WANG,Zi-wang XIAO,Sai-sai YU. New risk analysis method based on Bayesian network for hanging basker system of multi-tower cable-stayed bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 865-873.
[2] Chang-jun ZHONG,Zhong-bin WANG,Chen-yang LIU. Influencing factors and structural optimization of main cable saddle bearing capacity of suspension bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2068-2078.
[3] Wei CHEN,Tian-bao WAN,Zhong-bin WANG,Xuan LI,Rui-li SHEN. Design and performance of internal air supply conduit for dehumidification in main cables of suspension bridges [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1749-1755.
[4] Shu-lun GUO,Tie-yi ZHONG,Zhi-gang YAN. Calculation method of buffeting response for stay cables of long⁃span cable⁃stayed bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1756-1762.
[5] Peng TAN,Xin-hui LIU,Wei CHEN,Bing-wei CAO,Kuo YANG. Analysis on retracting phenomenon of boom cylinder of loader under unloading condition [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1204-1212.
[6] Kai GAO,Gang LIU. Effective strength improvement of global critical strength branch and bound method [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 597-603.
[7] Ya-feng GONG,Jia-xiang SONG,Guo-jin TAN,Hai-peng BI,Yang LIU,Cheng-xin SHAN. Multi⁃vehicle bridge weigh⁃in⁃motion algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 583-596.
[8] Qing-wen KONG,Guo-jin TAN,Long-lin WANG,Yong WANG,Zhi-gang WEI,Han-bing LIU. Analysis of free vibration characteristics of cracked box girder bridge based on finite element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 225-232.
[9] Hua CHEN,Yao-jia CHEN,Bin XIE,Peng-kai WANG,Lang-ni DENG. Interface failure mechanism and bonding strength calculation of CFRP tendons bonded anchorage system [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1698-1708.
[10] Ya-feng GONG,Jia-xiang SONG,Hai-peng BI,Guo-jin TAN,Guo-hai HU,Si-yuan LIN. Static test and finite element analysis of scale model of fabricated box culvert [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1728-1738.
[11] Hao GAO,Jun-jie WANG,Hui-jie LIU,Jian-ming WANG. Design criterion and applied devices for controlled seismic behavior of continuous girder bridges [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1718-1727.
[12] Qian-hui PU,Jing-wen LIU,Gang-yun ZHAO,Meng YAN,Xiao-bin LI. Theoretical analysis of bearing capacity of concrete eccentric compressive column reinforced by HTRCS [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 606-612.
[13] Yun-long ZHANG,Yang-yang GUO,Jing WANG,Dong LIANG. Natural frequency and mode of vibration of steel⁃concrete composite beam [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 581-588.
[14] Bo-xin WANG,Hai-tao YANG,Qing WANG,Xin GAO,Xiao-xu CHEN. Bridge vibration signal optimization filtering method based on improved CEEMD⁃multi⁃scale permutation entropy analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 216-226.
[15] Miao ZHANG,Yong-jiu QIAN,Fang ZHANG,Shou-qin ZHU. Experimental analysis of spatial force performance of concrete-reinforced stone arch bridge based on enlarged section method [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 210-215.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!