Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (9): 2554-2562.doi: 10.13229/j.cnki.jdxbgxb.20211243

Previous Articles     Next Articles

Shear properties of shear stud connectors under combined tension and shear loading

Ran AN(),You-zhi WANG()   

  1. School of Civil Engineering,Shandong University,Jinan 250061,China
  • Received:2021-11-18 Online:2023-09-01 Published:2023-10-09
  • Contact: You-zhi WANG E-mail:375826500@qq.com;wyz96996@163.com

Abstract:

In order to understand the mechanical properties of shear stud connectors under combined tension and shear loading, five groups of model tests were tested, including uniaxial pull-out tests, uniaxial push-out tests, and combined tension and shear loading tests. Combined with finite element models, influence of concrete strength and stud size on shear capacity were analyzed, and the load-slip relationship, the ultimate shear capacity formula of shear stud connectors under tension and shear loading were proposed. The results show that as the applied tensile force ratio increase to 0.6, the shear stiffness reduces 69%; and the ratio of ultimate elastic capacity to ultimate shear capacity reduces from 0.55 to 0.24, and the ultimate shear capacity reduces 31%. The effects of concrete strength and tensile force ratio on the shear capacity of shear stud connectors are correlated. The proposed load-slip relationship and ultimate shear capacity formula under tension and shear loading can be applied to engineering design and calculation.

Key words: bridge engineering, steel concrete composite beam, shear stud connector, shear stiffness, load-slip curve, ultimate shear capacity

CLC Number: 

  • U443.3

Fig.1

Dimension of specimens"

Table 1

Parameters of test"

试件编号混凝土抗压强度fc/MPa剪力钉规格d×h配筋λ
S1-1,S1-266.3416 mm×90 mm?12@ 1100
PS1-1,PS1-263.020.4
PS2-1,PS2-258.930.5
PS3-1,PS3-260.440.6
P162.07

Fig.2

Test set-up"

Fig.3

Failure modes of specimens"

Table 2

Test results"

试件T/kNTu/kNλλ=T/TuV/kNVu/kNV/Vusu/mmke/(kN·mm-1Ve/V
S1-1

0.00199.8

205.0

205.0

205.0

205.0

205.0

205.0

205.0

205.0

205.0

1.004.982557.80.54
S1-20.00210.01.004.122565.50.56
PS1-1330.40176.20.864.686299.50.34
PS1-2330.40168.40.826.015290.20.35
PS2-1410.50162.30.795.672210.60.26
PS2-2410.50154.70.754.714232.00.30
PS3-1500.60145.30.703.948167.10.22
PS3-2500.60140.40.685.312182.50.26
P182.3

Fig.4

FFM of specimen under tension and shear loading"

Fig.5

Stress diagram"

Fig.6

Comparison of FEM and experimental load-slip curves"

Fig.7

Influence factors of ultimate shear capacity"

Table 3

Concrete influence coefficient β"

混凝土强度/MPaλ
0.20.30.40.50.6
300.950.940.930.920.90
400.960.950.940.930.91
500.980.970.950.940.93
601.001.001.000.990.98

Fig.8

Comparison between text results and calculation curves"

Table 4

Shear and tension interaction relations of shear stud connectors"

文献来源拉剪相关关系式公式编号
文献[14VVu53+TTu531(6)
文献[19V=Vu,T0.1TuVVu+0.52+TTu+0.522.61,?????T>0.1Tu(7)
文献[22VVu2+TTu21(8)
文献[23V=Vu,T0.2TuVVu+TTu1.2,T>0.2Tu(9)

Table 5

Comparison of statistical eigenvalues of ultimate shear capacity calculation results of shear stud connectors"

数据来源试件/有限元数量式(6)式(7)式(8)式(9)式(10)
μημημημημη
文献[1010.9090.0000.8480.0001.3760.0000.9380.0001.0500.000
文献[11120.9170.0320.8620.0741.2740.2740.9410.0140.9830.021
文献[13320.8400.0540.7400.0541.6080.0540.8870.0541.0210.051
本文301.0070.0460.9260.0281.6200.1071.0440.0091.1010.022
1 王倩, 刘玉擎. 焊钉连接件抗剪承载力试验研究[J]. 同济大学学报: 自然科学版, 2013, 41(5): 659-663.
Wang Qian, Liu Yu-qing. Experimental study of shear stud connectors[J]. Journal of Tongji University (Natural Science Edition), 2013, 41(5): 659-663.
2 匡亚川, 陈立斌, 李超举, 等. 栓钉剪力连接件力学性能分析[J]. 吉林大学学报:工学版, 2023, 53(2): 538-546.
Kuang Ya-chuan, Chen Li-bin, Li Chao-ju, et al. Analysis of mechanical properties of stud shear connectors[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(2): 538-546.
3 鞠晓臣, 赵欣欣, 刘晓光, 等. 火灾作用下剪力钉抗拔性能研究[J]. 桥梁建设, 2018, 48(2): 55-60.
Ju Xiao-chen, Zhao Xin-xin, Liu Xiao-guang, et al. Study of pullout performance of shear stud under fire[J]. Bridge Construction, 2018, 48(2): 55-60.
4 蔺钊飞, 刘玉擎. 焊钉连接件抗拉承载力试验[J]. 同济大学学报: 自然科学版, 2015, 43(9): 1313-1319, 1331.
Lin Zhao-fei, Liu Yu-qing. Experimental study on static behavior of headed studs under tension force[J]. Journal of Tongji University (Natural Science Edition), 2015, 43(9): 1313-1319, 1331.
5 Luis P, Jerome F. Headed steel stud anchors in composite structures,part II: tension and interaction[J]. Journal of Constructional Steel Research, 2010, 66(2): 213-228.
6 薛东焱, 宛青云, 潘志宏, 等. 剪力与拉拔力共同作用下焊钉受力性能分析[J]. 江苏科技大学学报:自然科学版, 2020, 34(2): 97-102.
Xue Dong-yan, Wan Qing-yun, Pan Zhi-hong, et al. Mechanical behavior analysis of headed studs under shear and tension loads[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2020, 34(2): 97-102.
7 刘沐宇, 赖苑林, 邓晓光, 等. 集束式长短剪力钉抗剪承载力计算方法[J]. 中国公路学报, 2018, 31(12): 97-105.
Liu Mu-yu, Lai Yuan-lin, Deng Xiao-guang, et al. Calculation method of shear capacity of clustered stud connectors with different lengths and diameters[J]. China Journal of Highway and Transport, 2018, 31(12): 97-105.
8 张阳, 吴洁, 邵旭东, 等. 超高性能混凝土-普通混凝土界面抗剪性能试验研究[J]. 土木工程学报, 2021, 54(7): 81-89.
Zhang Yang, Wu Jie, Shao Xu-dong, et al. Experiment on interfacial shear properties between ultra-high performance concrete and normal strength concrete[J]. China Civil Engineering Journal, 2021, 54(7): 81-89.
9 Shen M H, Chung K F. An investigation into shear resistances of headed shear studs in solid concrete slabs with local aggregates in Hong Kong[J]. Procedia Engineering, 2011: 1098-1105.
10 Saari W K, Hajjar J F, Schultz A E, et al. Behavior of shear studs in steel frames with reinforced concrete infill walls[J]. Journal of Constructional Steel Research, 2004, 60(10): 1453-1480.
11 蔺钊飞, 刘玉擎. 焊钉连接件拉剪相关关系模型试验[J]. 中国公路学报, 2015, 28(1): 80-86.
Lin Zhao-fei, Liu Yu-qing. Model experiment on shear-tension interaction relationship of headed studs[J]. China Journal of Highway and Transport, 2015, 28(1): 80-86.
12 Shen M H, Chung K F. Experimental investigation into stud shear connections under combined shear and tension forces[J]. Journal of Constructional Steel Research, 2017, 133(6): 434-447.
13 Mirza O, Uy B. Effects of the combination of axial and shear loading on the behavior of headed stud steel anchors[J]. Engineering Structures, 2010, 32(1): 93-105.
14 Mcmackin P J, Slutter R G, Fisher J W. Headed steel anchor under combined loading[J]. AISC Engineering Journal, 1973, 2: 43-52.
15 蒲黔辉, 谢宏伟, 樊书文, 等. 拔出破坏的钢混组合结构栓钉连接件承载力的分析方法[J]. 工程科学与技术, 2019, 51(1): 89-95.
Pu Qian-hui, Xie Hong-wei, Fan Shu-wen, et al. Analysis method of bearing capacity of stud connector in steel concrete composite structures under push-out failure[J]. Advanced Engineering Sciences, 2019, 51(1): 89-95.
16 Luis P, Jerome F. Headed steel stud anchors in composite structures, part I: shear[J]. Journal of Constructional Steel Research, 2010, 66(2): 198-212.
17 EN 1994-1-1 :2004. Eurocode4: design of composite structures, part 1-1: general rules and rules for buildings [S].
18 Han Q H, Wang Y H, Xu J, et al. Static behavior of stud shear connectors in elastic concrete-steel composite beams[J]. Journal of Constructional Steel Research, 2015, 113: 115-126.
19 Lin Z F, Liu Y Q, He J. Behavior of stud connectors under combined shear and tension loads[J]. Engineering Structures, 2014, 81: 362-376.
20 Xue D Y, Liu Y Q, Yu Z, et al. Static behavior of multi-stud shear connectors for steel-concrete composite bridge[J]. Steel Construction, 2012, 74(8): 1-7.
21 苏庆田, 韩旭, 任飞. 多排焊钉推出试验试件力学性能[J]. 同济大学学报: 自然科学版, 2014, 42(7): 1011-1016.
Su Qing-tian, Han Xu, Ren Fei. Static behavior of push-out specimen with multi-row stud connectors[J]. Journal of Tongji University (Natural Science Edition), 2014, 42(7): 1011-1016.
22 Katsuhiko T, Katsuyuki N, Sumio H. Shear strength of headed stud shear connector subjected to tensile load[J]. Journal of Constructional Steel, 1999, 7: 233-240.
23 Bode H, Hanenkamp W. Capacity of headed studs under tension load[J]. Bauingenieur, 1985, 60: 361-367.
24 安然, 王有志, 周磊, 等. 剪力钉连接件拉剪复合作用试验及计算模型[J]. 长安大学学报: 自然科学版, 2020, 40(3): 42-52.
An Ran, Wang You-zhi, Zhou Lei, et al. Experiment and mechanical model of sheer stud connectors under combined tension and shear force[J]. Journal of chang'an University (Natural Science Edition), 2020, 40(3): 42-52.
[1] Xin-dai ZUO,Jin-quan ZHANG,Shang-chuan ZHAO. Fatigue stiffness degradation and life prediction method of in⁃service concrete T⁃beams [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2563-2572.
[2] Zheng-wei GU,Pan ZHANG,Dong-ye LYU,Chun-li WU,Zhong YANG,Guo-jin TAN,Xiao-ming HUANG. Earthquake⁃induced residual displacement analysis of simply supported beam bridge based on numerical simulation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1711-1718.
[3] Chun-li WU,Shi-ming HUANG,Kui LI,Zheng-wei GU,Xiao-ming HUANG,Bing-tao ZHANG,Run-chao YANG. Analysis of pier action effect under flood based on numerical simulation and statistical analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1612-1620.
[4] Guo-jin TAN,Qing-wen KONG,Xin HE,Pan ZHANG,Run-chao YANG,Yang-jun CHAO,Zhong YANG. Bridge scour depth identification based on dynamic characteristics and improved particle swarm optimization algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1592-1600.
[5] Hui JIANG,Xin LI,Xiao-yu BAI. Review on development of bridge seismic structural systems: from ductility to resilience [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1550-1565.
[6] Hua WANG,Long-lin WANG,Zi-mo ZHANG,Xin HE. Safety early warning technology of continuous rigid frame bridges based on crack width variation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1650-1657.
[7] Yu FENG,Jian-ming HAO,Feng WANF,Jiu-peng ZHANG,Xiao-ming HUANG. Analysis of transient wind⁃induced response of long⁃span bridge under nonstationary wind field [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1638-1649.
[8] Feng WANG,Shuang-rui LIU,Jia-ying WANG,Jia-ling SONG,Jun WANG,Jiu-peng ZHANG,Xiao-ming HUANG. Size and shape effects of wind drag coefficients for porous structures [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1677-1685.
[9] Jun WANG,Jia-wu LI,Feng WANG,Jiu-peng ZHANG,Xiao-ming HUANG. Wind speed distribution in simplified U⁃shaped valley and its effect on buffeting response of long⁃span suspension bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1658-1668.
[10] Ye YUAN. Natural frequency analysis of beam bridge structure under temperature and vehicle action [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1702-1710.
[11] Zi-yu LIU,Shi-tong CHEN,Mo-mo ZHI,Xiao-ming HUANG,Zhe-xin CHEN. Ultimate bearing capacity of temporary⁃permanent conversion rushrepair steel pier for emergency use [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1601-1611.
[12] Yue ZHANG,Chuan-sen LIU,Fei SONG. Influence of abutment back wall on continuous girder bridge's seismic fragility [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1372-1380.
[13] Shu-wei LAN,Dong-hua ZHOU,Xu CHEN,Nan-ming MO. Practical calculation method for the critical bearing capacity of double column bridge with high piers [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1105-1111.
[14] Ya-chuan KUANG,Li-bin CHEN,Chao-ju LI,Yu-hao HE. Analysis of mechanical properties of stud shear connectors [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 538-546.
[15] Qi-kai SUN,Nan ZHANG,Xiao LIU,Zi-ji ZHOU. Dynamic reduction coefficients of steel⁃concrete composite beam based on Timoshenko beam theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 488-495.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] Yang Qing-fang, Chen Lin . Division approach of traffic control work zone[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 139 -142 .
[10] Yu Hua-nan, Kang Jian . An improved blind multiuser detection scheme based on Kalman filter[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 122 -125 .