Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (9): 2542-2553.doi: 10.13229/j.cnki.jdxbgxb.20211260

Previous Articles     Next Articles

Stress⁃strain characteristics of geogrid reinforced rubber sand mixtures

Fang-cheng LIU1(),Jiang WANG1,Meng-tao WU2,Guo-bin BU1(),Jie HE1   

  1. 1.College of Civil Engineering,Hunan University of Technology,Zhuzhou 412007,China
    2.School of Civil Engineering,Tianjin University,Tianjin 300072,China
  • Received:2021-08-20 Online:2023-09-01 Published:2023-10-09
  • Contact: Guo-bin BU E-mail:fcliu@hut.edu.cn;guobinbu@hut.edu.cn

Abstract:

Based on the static triaxial shear test, the stress-strain characteristics, the modulus attenuation properties, and the normalized stress-strain behavior of reinforcing rubber sand mixtures were analyzed. Five kinds of rubber content (0%, 10%, 20%, 30%, and 40%), four kinds of geogrid reinforcing patterns (lateral arrangement with no layer/one layer/two layers/three layers), and three kinds of confining pressure(50 kPa、100 kPa、200 kPa) were taken into account in tests. Results indicate that ①The geogrid reinforcement makes stress-strain curves of rubber sand mixture raised obviously, and the hardening characteristics of the reinforced specimens are enhanced. ②The stress-strain behavior of the rubber sand mixture could be simulated well by the extended Duncan-chang hyperbola model, and the model parameters are evaluated with rubber content in the rubber sand mixture. With the increase of rubber content, the initial modulus of the rubber sand mixture decreases, and the attenuation parameters can quantitatively reflect the degree of modulus attenuation. The attenuation degree of rubber sand mixture increases for geogrid reinforcing cases lateral arrangement with three layers/no layer/two layers/one layer, but the overall difference is insignificant. ③With the use of geogrid reinforced, the reference strain of the rubber sand is increased while the index of the stress-strain model is decreased. To illustrate, the degree of nonlinearity of the normalized stress-strain curve of the modulus is weakened. With the increase of the geogrid-reinforced density and rubber content, the reinforcement effect of geogrid on the stress-strain characteristics of rubber sand is more significant.

Key words: geotechnical engineering, rubber sand mixture, geogrid reinforcement, triaxial shear tests, stress-strain relationship, geo-reinforcement effects

CLC Number: 

  • TU411.3

Table 1

Physical properties of tested materials"

试验材料比重Gs粒径/mm平均粒径D50不均匀系数Cu
废橡胶颗粒1.210.5~51.54.77
标准砂2.630.05~20.642.23

Table 2

Technical parameters of glass fiber geogrid"

材料网格尺寸/mm延伸率/%弹性模量/GPa抗拉强度/(kN·m-1
纵向横向
玻璃纤维12.7×12.7≤3676060

Fig.1

Grading curves of rubber and sand particles"

Fig.2

Arrangement of geogrids in RSM samples"

Table 3

Mass densities of RSM with different rubber contents"

配合比RC/%

ρdmin/

(g·cm-3

ρdmax/

(g·cm-3

相对密度Dr

装样密度ρ/

(g·cm-3

01.511.860.71.74
101.381.710.71.60
201.211.500.71.40
301.041.290.71.20
400.871.170.71.06

Fig.3

Test materials"

Fig.4

Tested and fitted curves of the deviatoric stress-axial strain relations of RSM with RC=0% (Pure Sand)"

Fig.5

Tested and fitted curves of the deviatoric stress-axial strain relations of RSM with RC=10%"

Fig.6

Tested and fitted curves of the deviatoric stress-axial strain relations of RSM with RC=20%"

Fig.7

Tested and fitted curves of the deviatoric stress-axial strain relations of RSM with RC=30%"

Fig.8

Tested and fitted curves of the deviatoric stress-axial strain relations of RSM with RC=40%"

Table 4

Values of failure stress and fitted parameters of stress-strain relationship of geogrid reinforced RSM"

RC/%σ3/kPa无筋1层加筋2层加筋3层加筋
E0/MPaεr/%αE0/MPaεr/%αE0/MPaεr/%αE0/MPaεr/%α
05022.641.761.3831.801.291.2237.781.071.1126.902.011.14
10026.242.781.3931.182.451.3025.893.431.4128.092.681.12
20035.864.361.6337.094.571.5241.234.241.3447.553.281.15
10507.974.891.497.096.881.619.126.021.6211.884.871.31
10010.496.791.8510.887.041.529.769.081.6612.337.721.39
20014.978.521.8915.469.031.6520.456.971.3520.037.751.33
20503.5710.001.855.516.081.105.477.481.013.9717.001.83
1005.7711.482.206.5911.421.526.2914.121.766.3116.561.47
2008.5312.731.999.5913.471.779.1617.421.3810.9115.061.38
30502.5811.441.884.206.651.163.988.691.182.6421.501.61
1004.3412.821.874.5314.271.574.6115.341.294.2921.611.41
2005.9315.881.856.5815.631.265.7025.211.146.3222.311.38
40502.1911.591.602.1715.191.592.2017.111.392.1323.760.71
1003.1415.201.693.2916.001.013.8813.840.644.4023.810.70
2004.1319.702.274.6222.191.265.1820.701.145.2821.331.71

Fig.9

Comparing the stress-strain parameters of RSM tested in this paper to those in published papers"

Fig.10

Variation of the initial elastic modulus of RSM with rubber mass content"

Fig.11

Variation of the initial elastic modulus of RSM with rubber mass content"

Table 5

Fitting values of attenuation parameterof initial modulus of RSM"

加筋方式衰减参数A
无筋0.182(本文试验)
0.324(El-Sherbiny等36
0.197(Youwai等)37
水平1层加筋0.197
水平2层加筋0.184
水平3层加筋0.165

Fig.12

Variation of reference strain and with rubber mass content"

Fig.13

Variation of α with rubber mass content"

Fig.14

Geogrid reinforcing effects on the initial elastic modulus of RSM"

Fig.15

Geogrid reinforcing effects on the reference strain of RSM"

Fig.16

Geogrid reinforcing effects on the stress-strain parameter α of RSM"

Table 6

Fitted values of slope coefficient between reinforcement effects coefficient andreinforcement density"

参数RC/%
010203040
CE0.1900.1830.1740.1020.148
Cε-0.0540.0670.2060.3180.308
Cα-0.141-0.135-0.224-0.235-0.358

Fig.17

Variation of Geogrid reinforcing effects on reference"

Fig.18

Illustration of variation of stress-strain relationships with reference strain εr andparameter α respectively"

1 Patil U, Valdes J R, Evans T M. Swell mitigation with granulated tire rubber[J]. Journal of Materials in Civil Engineering, 2011, 23(5): 721-727.
2 Soltani-jigheh H, Asadzadeh M, Marefat V. Effects of tire chips on shrinkage and cracking characteristics of cohesive soils[J]. Turkish Journal of Engineering and Environmental Sciences, 2013, 37(37): 259-271.
3 Xiao M, Bowen J, Graham M, et al. Comparison of seismic responses of geosynthetically reinforced walls with tire-derived aggregates and granular backfills[J]. Journal of Materials in Civil Engineering, 2012, 24(11): 1368-1377.
4 Christ M, Park J B, Hong S S. Laboratory Observation of the response of a buried pipeline to freezing rubber-sand backfill[J]. Journal of Materials in Civil Engineering, 2010, 22(9): 943-950.
5 Mehrjardi G T, Tafreshi S N M, Dawson A R. Numerical analysis on Buried pipes protected by combination of geocell reinforcement and rubber-soil mixture[J]. International Journal of Civil Engineering, Transaction B: Geotechnical Engineering, 2015, 13(2): 90-104.
6 Feng Z Y, Sutter K G. Dynamic properties of granulated rubber-sand mixtures[J]. Geotechnical Testing Journal, 2000, 23(3): 338-344.
7 Senetakis K, Anastasiadis A, Pitilakis K. Dynamic properties of dry sand/rubber (SRM) and gravel/rubber (GRM) mixtures in a wide range of shearing strain amplitudes[J]. Soil Dynamics and Earthquake Engineering, 2012, 33(1): 38-53.
8 刘方成, 陈璐, 王海东. 橡胶砂动剪模量和阻尼比循环单剪试验研究[J]. 岩土力学, 2016, 37(7): 1903-1913.
Liu Fang-cheng, Chen Lu, Wang Hai-dong. Evaluation of dynamic shear modulus and damping ratio of rubber-sand mixture based on cyclic simple shear tests[J]. Rock and Soil Mechanics, 2016, 37(7): 1903-1913.
9 姚玉文, 刘方成, 补国斌, 等. 橡胶砂弹性动力学参数的弯曲-伸缩元试验研究[J]. 岩土力学, 2020, 41(7): 2369-2379.
Yao Yu-wen, Liu Fang-cheng, Bu Guo-bin, et al. Laboratory study on elastic dynamic mechanics of rubber-sand mixture by bender-extender element method[J]. Rock and Soil Mechanics, 2020, 41(7): 2369-2379.
10 Das S, Bhowmik D. Small-strain dynamic behavior of sand and sand-crumb rubber mixture for different sizes of crumb rubber particle[J]. Journal of Materials in Civil Engineering, 2020, 32(11): No. 04020334.
11 Rios S, Kowalska M, da Fonseca A V. Cyclic and dynamic behavior of sand-rubber and clay-rubber mixtures[J]. Geotechnical and Geological Engineering, 2021, 39(5): 3449-3467.
12 Lee J, Salgado R, Bernal A, et al. Shredded tires and rubber-sand as lightweight backfill[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(2): 132-141.
13 Tsang H H, Lo S H, Xu X, et al. Seismic isolation for low-to-medium-rise buildings using granulated rubber-soil mixtures: numerical study[J]. Earthquake Engineering and Structural Dynamics, 2012, 41(14): 2009-2024.
14 刘方成, 任东滨, 刘娜, 等. 土工格室加筋橡胶砂垫层隔震效果数值分析[J]. 土木工程学报, 2015, 47(): 1-7.
Liu Fang-cheng, Ren Dong-bin, Liu Na, et al. Numerical simulation on the isolation effect of geocell reinforced rubber-sand mixture cushion as earthquake base isolator[J]. China Civil Engineering Journal, 2015, 47(Sup.2): 1-7.
15 Tsang H H, Tran D P, Hung W Y, et al. Performance of geotechnical seismic isolation system using rubber-soil mixtures in centrifuge testing[J]. Earthquake Engineering & Structural Dynamics, 2021, 50(5): 1271-1289.
16 Pitilakis D, Anastasiadis A, Vratsikidis A, et al. Large-scale field testing of geotechnical seismic isolation of structures using gravel-rubber mixtures[J]. Earthquake Engineering & Structural Dynamics, 2021, 50(10): 2712-2731.
17 Zornberg J G, Cabral A R, Viratjandr C. Behaviour of tire shred sand mixtures[J]. Canadian Geotechnical Journal, 2004, 41(2): 227-241.
18 辛凌, 刘汉龙, 沈扬, 等. 废弃轮胎橡胶颗粒轻质混合土强度特性试验研究[J]. 岩土工程学报, 2010, 32(3): 428-433.
Xin Ling, Liu Han-long, Shen Yang, et al. Consolidated undrained triaxial compression tests on lightweight soil mixed with rubber chips of scrap tires[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 428-433.
19 Cabalar A F. Direct shear tests on waste tires-sand mixtures[J]. Geotechnical and Geological Engineering, 2011, 29(4): 411-418.
20 Vinod J S, Sheikh M N, Mastello D, et al. The direct shear strength of sand tyre shred mixtures[C]∥Proceedings of the International Conference on Geotechnical Engineering, Sri Lanka, 2015: 193-196.
21 汪明元, 施戈亮, 丁金华, 等. 土工格栅与压实膨胀土的界面模型及其参数[J]. 吉林大学学报:工学版, 2010, 40(3): 688-693.
Wang Ming-yuan, Shi Ge-liang, Ding Jin-hua, et al. Interface model and its parameters between geogrids and compacted expansive soil[J]. Journal of Jilin University(Engineering and Technology Edition), 2010, 40(3): 688-693.
22 王蔓, 李泽成, 白瑞祥. 复合材料格栅加筋板的分层扩展特性[J]. 吉林大学学报:工学版, 2007, 37(1): 229-233.
Wang Man, Li Ze-cheng, Bai Rui-xiang, Delamination growth characteristics for composite grid stiffened plates[J]. Journal of Jilin University(Engineering and Technology Edition), 2007, 37(1): 229-233.
23 杨广庆. 土工格栅加筋土结构理论及工程应用[M]. 北京:科学出版社, 2010.
24 Han J. Principles and Practice of Ground Improvement[M]. New York: John Wiley & Sons, 2015.
25 刘方成, 吴孟桃, 杨峻. 土工格栅加筋橡胶砂强度特性试验研究[J]. 岩土力学, 2019,40(2): 580-591.
Liu Fang-cheng, Wu Meng-tao, Yang Jun. Experimental study on strength characteristics of geogrid reinforced rubber sand mixtures[J]. Rock and Soil Mechanics, 2019, 40(2): 580-591.
26 刘启菲, 庄海洋, 陈佳,等.废旧轮胎橡胶颗粒-砂混合料抗剪强度与破坏模式试验研究[J].岩土工程学报, 2021, 43(10): 1887-1895.
Liu Qi-fei, Zhuang Hai-yang, Chen Jia, et al. The shear strength and failure mode of rubber particle-sand mixtures in the test[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1887-1895.
27 杨广庆, 李广信, 张保俭. 土工格栅界面摩擦特性试验研究[J]. 岩土工程学报, 2006, 28(8): 948-952.
Yang Guang-qing, Li Guang-xin, Zhang Bao-jian. Experimental studies on interface friction characteristics of geogrids[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 948-952.
28 Abdi M R, Arjomand M A. Pullout tests conducted on clay reinforced with geogrid encapsulated in thin layers of sand[J]. Geotextiles and Geomembranes, 2011, 29(6): 588-595.
29 周小凤, 张孟喜, 邱成春, 等. 不同形式土工格栅加筋砂的强度特性[J]. 上海交通大学学报, 2013, 47(9): 1377-1381.
Zhou Xiao-feng, Zhang Meng-xi, Qiu Cheng-chun, et al. Strength of sand reinforced with different forms of geogrid[J]. Journal of Shanghai Jiao Tong University, 2013, 47(9): 1377-1381.
30 胡幼常, 申俊敏, 赵建斌, 等. 土工格栅加筋掺砂黄土工程性质试验研究[J]. 岩土力学, 2013(): 74-80.
Hu You-chang, Shen Jun-min, Zhao Jian-bin, et al. Experimental study of engineering properties of geogrid-reinforced loess mixed with sand[J]. Rock and Soil Mechanics, 2013(Sup.2): 74-80.
31 王协群, 郭敏, 胡波. 土工格栅加筋膨胀土的三轴试验研究[J]. 岩土力学, 2011, 32(6): 1649-1653.
Wang Xie-qun, Guo Min, Hu Bo. Triaxial testing study of expansive soil reinforced with geogrid[J]. Rock and Soil Mechanics, 2011, 32(6): 1649-1653.
32 Ahmed I. Laboratory Study on Properties of Rubber-soils[M]. Indiana, USA: Purdue University, 1993.
33 Verdugo R, Ishihara K. The steady state of sandy soils[J]. Soils and Foundations, 1996, 36(2): 81-91.
34 Zheng Y F, Kevin G S. Dynamic properties of granulated rubber/sand mixtures[J]. Geotechnical Testing Journal, 2000, 23(3): 338-344.
35 Duncan J M, Chang C Y. Nonlinear analysis of stress and strain in soils[J]. Journal of Soil Mechanics and Foundations Division, 1970, 96(5): 1629-1653.
36 刘方成, 张永富, 任东滨. 橡胶砂应力-应变特性三轴-单剪联合试验研究[J]. 岩土力学, 2016, 37(10): 2769-2779.
Liu Fang-cheng, Zhang Yong-fu, Ren Dong-bin. Stress-strain characteristics of rubber-sand mixtures in united triaxial shear and simple shear tests[J]. Rock and Soil Mechanics, 2016, 37(1): 2769-2779.
37 Youwai S, Bergado D T. Strength and deformation characteristics of shredded rubber tire sand mixtures[J]. Canadian Geotechnical Journal, 2003, 40(2): 254-264.
[1] Ya-feng GONG,Shu-zheng WU,Hai-peng BI,Guo-jin TAN. Temperature field and frost heaving analysis of prefabricated box culvert based on field monitoring [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2321-2331.
[2] Ying-xin HUI,Jia-wei CHEN. Squeezed branch pile groups optimization method based on improved genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2089-2098.
[3] Ya-feng GONG,Shu-zheng WU,Hai-peng BI,Dong-ming ZHOU,Guo-jin TAN,Xiao-ming HUANG. Acoustic characterization of bond⁃slip process between basalt fiber reactive powder concrete and steel strand [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1819-1832.
[4] Shun LIU,Xiao-wei TANG,Yi-xiao LUAN. Influence of Rayleigh damping coefficient on seismic response of subway structure in liquefiable soil [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 159-169.
[5] Liang TANG,Pan SI,Jie CUI,Xian-zhang LING,Xiao-feng MAN. Pseudo-static analysis method of pile group earthquake response in liquefying mild inclined sloping ground [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 847-855.
[6] Ping JIANG,Lin ZHOU,Tian-hao MAO,Jun-ping YUAN,Wei WANG,Na LI. Damage model and time effect of cement⁃modified waste slurry [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 2874-2882.
[7] Fei ZHANG,Yu-ming ZHU,Shang-chuan YANG,Shu-mao WANG. Emission mitigation analysis of geosynthetic⁃reinforced walls [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 631-637.
[8] Wen-bin TAO,Jun-ling HOU,Tie-lin CHEN,Bin TANG. Mechanical analysis of full⁃length anchorage with high pretension post⁃tensioning method [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 631-640.
[9] Deng-hui GAO,Yi-chuan XING,Min-xia GUO,Ai-jun ZHANG,Xian-tao WANG,Bao-hong MA. Modified hyperbola model of interface between unsaturated remolded loess and concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 156-164.
[10] GU Hai-dong,LUO Chun-hong. Experiment on soil arching effect of pit supporting structure with scattered row piles and soil nail wall [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1712-1724.
[11] YANG Ai-wu,ZHOU Jin,KONG Ling-wei. Experiment on mechanical properties of stabilized soft dredger fill [J]. 吉林大学学报(工学版), 2014, 44(3): 661-667.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[10] Feng Hao,Xi Jian-feng,Jiao Cheng-wu . Placement of roadside traffic signs based on visibility distance[J]. 吉林大学学报(工学版), 2007, 37(04): 782 -785 .