Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (11): 3056-3061.doi: 10.13229/j.cnki.jdxbgxb.20220768

Previous Articles     Next Articles

Simulation of ultra-precision machine tool spindle fault diagnosis based on multi-state time series predictive learning

Chao-gang ZHANG1(),Zhong-lou SHI1,Min LI2   

  1. 1.Engineering Training Centre,Jianghan University,Wuhan 430056,China
    2.Engineering Training and Innovation Practice Center,Wuhan University,Wuhan 430056,China
  • Received:2022-06-20 Online:2023-11-01 Published:2023-12-06

Abstract:

A fault diagnosis method for ultra precision machine tool spindle based on multi state time series predictive learning was proposed, and the simulation test of the method was completed. By constructing a DAFDC-RNN model (Dual-stage attention and full dimension convolution based recurrent neural network) introduces attention, full-dimensional convolution and time attention mechanisms to generate the correlation between spindles in the process of running state. The output of the model is the predicted value of spindle operating failure. The EMD-AR analysis method (Empirical mode decomposition-auto regressive) decomposes the first-order components in the time domain signal, and excludes the generation of a new signal until it is no longer decomposed. After decomposition, the signal is calculated and solved, and the fault diagnosis result is obtained. The experimental results show that the fault prediction accuracy of the proposed method can reach 0.95~1.0, and the time-consuming can be controlled within 10 ms. The amplitude fluctuation of the normal signal decomposed by the spindle running signal decomposition under the research method is basically consistent with the actual results.

Key words: multi-state time series, sequence prediction, ultra-precision machine tools, fault diagnosis, EMD

CLC Number: 

  • TM464

Fig.1

Fault diagnosis prediction accuracy of three methods"

Fig.2

Fault prediction time using different methods"

Fig.3

Actual signal decomposition diagnosis"

Fig. 4

Decomposition diagnosis of the method in this article"

1 陈传海, 王成功, 杨兆军, 等. 数控机床可靠性建模研究现状及发展动态分析[J]. 吉林大学学报: 工学版, 2022, 52(2): 253-266.
Chen Chuan-hai, Wang Cheng-gong, Yang Zhao-jun, et al. Research status and development trend analysis of reliability modeling of CNC machine tools[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 253-266.
2 赵亮, 雷默涵, 朱星星, 等. 高精度数控机床主轴系统热误差的控制方法[J]. 上海交通大学学报, 2020, 54(11): 1165-1171.
Zhao Liang, Lei Mo-han, Zhu Xing-xing, et al. A new thermal error control method for spindle system of high precision computer numerical control machine tools[J]. Journal of Shanghai Jiaotong University, 2020, 54(11): 1165-1171.
3 林伟强. 基于循环神经网络的数控机床故障诊断研究[J]. 机床与液压, 2022, 50(5): 191-196.
Lin Wei-qiang. Research on fault diagnosis of NC machine tool based on circulating neural network[J]. Machine Tool & Hydraulics, 2022, 50(5): 191-196.
4 李东东, 赵耀, 赵阳, 等. 基于改进生成对抗网络的风机行星齿轮箱故障诊断方法[J]. 中国电机工程学报, 2021, 41(21): 7496-7507.
Li Dong-dong, Zhao Yao, Zhao Yang, et al. Fault diagnosis method of wind turbine planetary gearbox based on improved generative adversarial network[J]. Proceedings of the CSEE, 2021, 41(21): 7496-7507.
5 王英, 王丹, 陈小强, 等. 基于改进谱峭度与电流均值的牵引整流器开路故障诊断方法[J]. 电力自动化设备, 2020, 40(1): 112-118.
Wang Ying, Wang Dan, Chen Xiao-qiang, et al. Open circuit fault diagnosis method for traction rectifier based on improved spectral kurtosis and current mean value[J]. Electric Power Automation Equipment, 2020, 40(1): 112-118.
6 史建楠, 邹俊忠, 张见, 等. 基于DMD-LSTM模型的股票价格时间序列预测研究[J]. 计算机应用研究, 2020, 37(3): 662-666.
Shi Jian-nan, Zou Jun-zhong, Zhang Jian, et al. Research of stock price prediction based on DMD-LSTM model[J]. Application Research of Computers, 2020, 37(3): 662-666.
7 章子玲, 胡雄, 亓寅, 等. 基于向量投影响应面的数控机床几何误差分配方法[J]. 吉林大学学报: 工学版, 2022, 52(2): 384-391.
Zhang Zi-ling, Hu Xiong, Qi Yan, et al. An approach for error allocation of machine tool based on vector projection response surface method[J]. Journal of Jilin University(Engineering and Technology Edition), 2022,52(2): 384-391.
8 崔少华, 李素文, 汪徐德. BP神经网络和SVD算法联合的地震数据去噪方法[J]. 电子测量与仪器学报, 2020, 34(2): 12-19.
Cui Shao-hua, Li Su-wen, Wang Xu-de. Joint de-noising method of seismic data via BP neural network and SVD algorithm[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34(2): 12-19.
9 张强, 杨吉斌, 张雄伟, 等. CS-Softmax:一种基于余弦相似性的Softmax损失函数[J]. 计算机研究与发展, 2022, 59(4): 936-949.
Zhang Qiang, Yang Ji-bin, Zhang Xiong-wei, et al. CS-Softmax: a cosine similarity-based softmax loss function[J]. Journal of Computer Research and Development, 2022, 59(4): 936-949.
10 孟月波, 石德旺, 刘光辉, 等. 多维度卷积融合的密集不规则文本检测[J]. 光学精密工程, 2021, 29(9): 2210-2221.
Meng Yue-bo, Shi De-wang, Liu Guang-hui, et al. Dense irregular text detection based on multi-dimensional convolution fusion[J]. Optics and Precision Engineering, 2021, 29(9): 2210-2221.
11 张峰瑞, 姜谙男, 赵亮, 等. 基于多变量GP-DE模型的隧道变形时间序列预测研究[J]. 现代隧道技术, 2021, 58(1): 109-116.
Zhang Feng-rui, Jiang An-nan, Zhao Liang, et al. Study on time series prediction of the tunnel deformation based on the multivariable GP-DE Model[J]. Modern Tunnelling Technology, 2021, 58(1): 109-116.
12 刘新田, 马牧洲, 何佳龙. 基于模糊耦合的机床零件加工精度可靠性预测方法[J]. 吉林大学学报: 工学版, 2022, 52(2): 377-383.
Liu Xin-tian, Ma Mu-zhou, He Jia-long. Reliability prediction method of machining precision of machine tool parts based on fuzzy coupling[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 377-383.
13 余孟阳, 杨帆. 信息链接技术下自动化设备现场故障运维仿真[J]. 计算机仿真, 2021, 38(12): 475-479.
Yu Meng-yang, Yang Fan. Field failure operation and maintenance simulation of automation equipment based on information link technology[J]. Computer Simulation, 2021, 38(12): 475-479.
14 赵寿生, 汪卫国, 王丰华, 等. 基于统计特征与EMD算法的有载分接开关振动信号去噪[J]. 电工电能新技术, 2020, 39(1): 51-58.
Zhao Shou-sheng, Wang Wei-guo, Wang Feng-hua, et al. Denoising method of vibration signal of on-load tap changer based on statistical feature and EMD algorithm[J]. Advanced Technology of Electrical Engineering and Energy, 2020, 39(1): 51-58.
15 Li J, Sacchi M D. An l p-space matching pursuit algorithm and its application to robust seismic data denoising via time-domain Radon transforms[J]. Geophysics, 2021, 86(3): 1-90.
16 Zeng Y, Li J, Wei C, et al. mbDenoise: microbiome data denoising using zero-inflated probabilistic principal components analysis[J]. Genome Biology, 2022, 23(1): 1-29.
17 李水利, 周建民, 孙定邦. 自适应MED降噪和EMD分解在注塑机轴承故障诊断中的应用[J]. 塑料科技, 2020, 48(6): 124-128.
Li Shui-li, Zhou Jian-min, Sun Ding-bang. Application of adaptive MED noise reduction and EMD decomposition in fault diagnosis of mechanical Bearings[J]. Plastics Science and Technology, 2020, 48(6): 124-128.
18 Rakotondramanana A L H, Randrianirina H H R, Randriamiharisoa M A, et al. Contributions of IMFs programs to household financial resilience: financial evolution of households in rural areas—the case of malagasy IMFs[J]. Modern Economy, 2021, 12(12): 1212102.
19 Shankar V F, Cockle J, et al. IMG-18. Assessment of suspected disease progression using multiparametric 18f-choline pet/mri in childhood and teenage-young adult gliomas[J]. Neuro-Oncology, 2020, 22(3): 358.
20 Hou S, Guo X. Research on fault location of distribution lines based on the standing wave principle[J]. Processes, 2021, 9(8): 9081436.
[1] Dan-tong OUYANG,Rui SUN,Xin-liang TIAN,Li-ming ZHANG,Ping-ping LIU. Approach for generating minimal fault detectability and isolability set in dynamic system based on partial maximum satisfiability problem [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1163-1173.
[2] Dan-tong OU-YANG,Rui SUN,Xin-liang TIAN,Bo-han GAO. Set blocking⁃based approach to sensor selection in uncertain systems [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 547-554.
[3] Yong-gang CHEN,Ji-ye XU,Hai-yong WANG,Wen-xiang XIONG. Fault diagnosis method of point machine based on adaptive neural fuzzy inference network system [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3274-3280.
[4] Jie CAO,Jia-lin MA,Dai-lin HUANG,Ping YU. A fault diagnosis method based on multi Markov transition field [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 491-496.
[5] Jin-hua WANG,Jia-wei HU,Jie CAO,Tao HUANG. Multi⁃fault diagnosis of rolling bearing based on adaptive variational modal decomposition and integrated extreme learning machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 318-328.
[6] Shao-jiang DONG,Peng ZHU,Xue-wu PEI,Yang LI,Xiao-lin HU. Fault diagnosis of rolling bearing under variable operating conditions based on subdomain adaptation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 288-295.
[7] Wei LUO,Bo LU,Fei CHEN,Teng MA. Fault diagnosis method of NC turret based on PSO⁃SVM and time sequence [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 392-399.
[8] Fei-yue DENG, LYUHao-yang,Xiao-hui GU,Ru-jiang HAO. Fault diagnosis of high⁃speed train axle bearing based on a lightweight neural network Shuffle⁃SENet [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 474-482.
[9] Long ZHANG,Tian-peng XU,Chao-bing WANG,Jian-yu YI,Can-zhuang ZHEN. Gearbox fault diagnosis baed on convolutional gated recurrent network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 368-376.
[10] Xiao⁃lei CHEN,Yong⁃feng SUN,Ce LI,Dong⁃mei LIN. Stable anti⁃noise fault diagnosis of rolling bearing based on CNN⁃BiLSTM [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 296-309.
[11] Xian-jun DU,Liang-liang JIA. Fault diagnosis of rolling bearing based on optimized stacked denoising auto encoders [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 2827-2838.
[12] Fei CHEN,Zheng YANG,Zhi-cheng ZHANG,Wei LUO. Fault diagnosis method of rotating machinery for unlabeled data [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2514-2522.
[13] Jie CAO,Zhi-Dong HE,Ping YU,Jin-hua WANG. Bearing fault diagnosis method under unbalanced data distribution [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2523-2531.
[14] Dan-tong OUYANG,Bi-ge ZHANG,Nai-yu TIAN,Li-ming ZHANG. Fail data reduction algorithm combining configuration checking with local search [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2144-2153.
[15] Lao-hu YUAN,Dong-shan LIAN,Liang ZHANG,Yi LIU. Fault diagnosis of key mechanical components of aircraft based on densenet and support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1635-1641.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .