Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (10): 2932-2941.doi: 10.13229/j.cnki.jdxbgxb.20211357
Previous Articles Next Articles
CLC Number:
1 | Brown M, Funke J, Erlien S, et al. Safe driving envelopes for path tracking in autonomous vehicles[J]. Control Engineering Practice, 2017, 61: 307-316. |
2 | Tian B, Yao Q, Gu Y, et al. Video processing techniques for traffic flow monitoring: a survey[C]∥The 14th International IEEE Conference on Intelligent Transportation Systems, Washington DC,USA,2011: 1103-1108. |
3 | Sivanantham S, Paul N N, Iyer R S. Object tracking algorithm implementation for security applications[J]. Far East Journal of Electronics and Communications, 2016, 16(1): 1-13. |
4 | Onate J M B, Chipantasi D J M, Erazo Nd R V. Tracking objects using artificial neural networks and wireless connection for robotics[J]. Journal of Telecommunication, Electronic and Computer Engineering, 2017, 9(1/3): 161-164. |
5 | Aggarwal J K, Xia L. Human activity recognition from 3d data: a review[J]. Pattern Recognition Letters, 2014, 48: 70-80. |
6 | Pfister T, Charles J, Zisserman A. Flowing ConvNets for human pose estimation in videos[C]∥IEEE International Conference of Computer Vision, Santiago,Chile, 2015: 1913-1921. |
7 | Choi W, Savarese S. A unified framework for multi-target tracking and collective activity recognition[C]∥European Conference on Computer Vision,Florence, Italy, 2012: 215-230. |
8 | Hu W, Tan T, Wang L, et al. A survey on visual surveillance of object motion and behaviors[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2004, 34(3): 334-352. |
9 | Ciaparrone G, Sánchez F L, Tabik S, et al. Deep learning in video multi-object tracking: a survey[J]. Neurocomputing, 2019, 381: 61-88. |
10 | Yu F, Li W, Li Q, et al. POI: multiple object tracking with high performance detection and appearance feature[C]∥European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 36-42. |
11 | Fang K, Xiang Y, Li X, et al. Recurrent autoregressive networks for online multi-object tracking[C]∥IEEE Winter Conference on Applications of Computer Vision,Santa Rosa, USA, 2017: 466-475. |
12 | Zhou Z, Xing J, Zhang M, et al. Online Multi-target tracking with tensor-based high-order graph matching[C]∥The 24th International Conference on Pattern Recognition, Beijing, China, 2018: 1809-1814. |
13 | Mahmoudi N, Ahadi S M, Rahmati M. Multi-target tracking using CNN-based features: CNNMTT[J]. Multimedia Tools and Applications, 2019, 78(6): 7077-7096. |
14 | Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. |
15 | Liu W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector[C]∥European Conference on Computer Vision,Amsterdam, Netherlands,2016: 21-37. |
16 | Redmon J, Farhadi A. YOLOv3: an incremental improvement[J/OL].[2018-04-21]. arXiv preprint arXiv:. |
17 | Voigtlaender P, Krause M, Osep A, et al. MOTS: multi-object tracking and segmentation[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Los Angeles, USA, 2019: 7934-7943. |
18 | Wang Z, Zheng L, Liu Y, et al. Towards real-time multi-object tracking[C]∥European Conference on Computer Vision, Online, 2020: 107-122. |
19 | Zhang Y, Wang C, Wang X, et al. FairMOT: on the fairness of detection and re-identification in multiple object tracking[J]. International Journal of Computer Vision, 2020, 129: 3069-3087. |
20 | Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188. |
21 | Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577. |
22 | Magee D R. Tracking multiple vehicles using foreground, background and motion models[J]. Image and Vision Computing, 2004, 22(2): 143-155. |
23 | Indu S, Gupta M, Bhattacharyya A. Vehicle tracking and speed estimation using optical flow method[J]. International Journal of Engineering Science and Technology, 2011, 3(1): 429-434. |
24 | Niknejad H T, Takeuchi A, Mita S, et al. On-road multivehicle tracking using deformable object model and particle filter with improved likelihood estimation[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(2): 748-758. |
25 | 王林, 胥中南.改进的KCF算法在车辆跟踪中的应用[J]. 计算机测量与控制, 2019, 27(7): 195-199. |
Wang Lin, Xu Zhong-nan. Application of improved KCF algorithm in vehicle tracking[J]. Computer Measurement and Control, 2019, 27(7): 195-199. | |
26 | Yang X, Yang J, Yan J, et al. SCRDet: Towards More Robust Detection for Small, Cluttered and Rotated Objects[C]∥IEEE International Conference on Computer Vision, Seoul, South Korea, 2019: 8231-8240. |
27 | Yang X, Sun H, Fu K, et al. Automatic ship detection of remote sensing images from google earth in complex scenes based on multi-scale rotation dense feature pyramid networks[J]. Remote Sensing, 2018, 10(1): 132. |
28 | Sohn K. Improved deep metric learning with multi-class N-pair loss objective[C]∥Proceedings of the 30th International Conference on Neural Information Processing Systems,Honolulu, USA, 2016: 1857-1865. |
29 | Kumbasar T. Revisiting KM algorithms: a linear programming approach[C]∥IEEE International Conference on Fuzzy Systems,Zhangjiajie, China,2015:1-6. |
30 | Fan H, Du D, Wen L, et al. VisDrone-MOT2020: the vision meets drone multiple object tracking challenge results[C]∥European Conference on Computer Vision, Online, 2020: 713-727. |
31 | Yu H, Li G, Zhang W, et al. The unmanned aerial vehicle benchmark: object detection, tracking and baseline[J]. International Journal of Computer Vision, 2020, 128(5): 1141-1159. |
32 | Bernardin K, Stiefelhagen R. Evaluating multiple object tracking performance: the CLEAR MOT metrics[J]. EURASIP Journal on Image and Video Processing, 2008: No.246309. |
33 | Ristani E, Solera F, Zou R, et al. Performance measures and a data set for multi-target, multi-camera tracking[C]∥European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 17-35. |
34 | Wojke N, Bewley A, Paulus D. Simple online and realtime tracking with a deep association metric[C]∥IEEE International Conference on Image Processing,Beijing, China, 2017: 3645-3649. |
35 | Yu F, Li W, Li Q, et al. POI: multiple object tracking with high performance detection and appearance feature[C]∥European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 36-42. |
[1] | Guang HUO,Da-wei LIN,Yuan-ning LIU,Xiao-dong ZHU,Meng YUAN,Di GAI. Lightweight iris segmentation model based on multiscale feature and attention mechanism [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2591-2600. |
[2] | Ying HE,Zhuo-ran WANG,Xu ZHOU,Yan-heng LIU. Point of interest recommendation algorithm integrating social geographical information based on weighted matrix factorization [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2632-2639. |
[3] | Yun-zuo ZHANG,Xu DONG,Zhao-quan CAI. Multi view gait cycle detection by fitting geometric features of lower limbs [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2611-2619. |
[4] | Ming-yao XIAO,Xiong-fei LI,Rui ZHU. Medical image fusion based on pixel correlation analysis in NSST domain [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2640-2648. |
[5] | Ya-hui ZHAO,Fei-yu LI,Rong-yi CUI,Guo-zhe JIN,Zhen-guo ZHANG,De LI,Xiao-feng JIN. Korean⁃Chinese translation quality estimation based on cross⁃lingual pretraining model [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2371-2379. |
[6] | Xiao-jun JIN,Yan-xia SUN,Jia-lin YU,Yong CHEN. Weed recognition in vegetable at seedling stage based on deep learning and image processing [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2421-2429. |
[7] | Xiang-jiu CHE,Huan XU,Ming-yang PAN,Quan-le LIU. Two-stage learning algorithm for biomedical named entity recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2380-2387. |
[8] | Qing-tian GENG,Zhi LIU,Qing-liang LI,Fan-hua YU,Xiao-ning LI. Prediction of soil moisture based on a deep learning model [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2430-2436. |
[9] | Lian-ming WANG,Xin WU. Method for 3D motion parameter measurement based on pose estimation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2099-2108. |
[10] | Wei-tiao WU,Kun ZENG,Wei ZHOU,Peng LI,Wen-zhou JIN. Deep learning method for bus passenger flow prediction based on multi-source data and surrogate-based optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2001-2015. |
[11] | Pei-yong LIU,Jie DONG,Luo-feng XIE,Yang-yang ZHU,Guo-fu YIN. Surface defect detection algorithm of magnetic tiles based on multi⁃branch convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1449-1457. |
[12] | Zhen-hai ZHANG,Kun JI,Jian-wu DANG. Crack identification method for bridge based on BCEM model [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1418-1426. |
[13] | Ze-qiang ZHANG,Wei LIANG,Meng-ke XIE,Hong-bin ZHENG. Elite differential evolution algorithm for mixed⁃model two⁃side disassembly line balancing problem [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1297-1304. |
[14] | Wen-li JI,Zhong TIAN,Jing CHAI,Ding-ding ZHANG,Bin WANG. Prediction of water⁃flowing height in fractured zone based on distributed optical fiber and multi⁃attribute fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1200-1210. |
[15] | Peng YU,Yan PIAO. New method for extracting person re-identification attributes based on multi-scale features [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1155-1162. |
|