Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (4): 1153-1165.doi: 10.13229/j.cnki.jdxbgxb.20220687

Previous Articles    

Experimental study on in-situ tilling plow in facility agriculture based on discrete element method

Yuan-yi LIU1(),Sheng-jie YU1,Bei XU1,Xian-liang WANG1,Fa-cheng SONG2   

  1. 1.College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
    2.State Key Laboratory for Manufacturing Systems Engineering, Xi′an jiaotong University, Xi′an 710054, China
  • Received:2022-06-02 Online:2024-04-01 Published:2024-05-17

Abstract:

In view of the problem that the arable plough could not be used for deep ploughing due to the narrow space of facility agriculture and the serious soil diseases and insect pests, a method of turning soil on the spot was put forward.Based on the reverse engineering, the reverse surface of the plough body of the local soil turning plough was obtained. Based on the existing forming principle of the plough body, the forward surface of the plough body of the share plough body was established by referring to the ploughing width, ploughing depth, installation angle of the plough body, soil cutting angle, guiding curve lifting angle, opening and length of the plough body.The soil relative humidity was 34.57% and the soil accumulation angle was 39°. The contact parameter range was obtained by GEMM, the contact parameter database of EDEM software. The surface energy between soil particles was 4.19 J/m2, the collision recovery coefficient was 0.282, the dynamic friction coefficient was 0.051, and the static friction coefficient was 0.629.The concept of soil fall rate in original gully was introduced. The interaction model between soil fall rate and surface parameters was established, and the optimal surface parameters of soil fall rate were obtained.Using Design-Expert software, plackett-Burman experimental design method was used to carry out multi-factor and two-level significance screening test with soil fall rate as the response index. Three significant factors affecting soil fall rate of the original ditch were obtained, namely, plow width, plowshare installation angle and soil cutting angle.Box-Behnken experimental design was carried out for the three factors, and the optimal design parameters of 278.392 mm plow width, 40.522°plow share installation angle and 23.211°soil cutting angle were obtained.Based on the optimized results, the error between the experimental results and the predicted results is 3.13%. The experimental results show that the tilling plow can achieve the aim of tilling in situ, and provide a reference for solving the problem of soil deep tilling in facility agriculture.

Key words: agricultural engineering, in-situ tilling plow, orthogonal test, soil falling rate of original ditch, physical test

CLC Number: 

  • S222.19

Fig.1

Measurement process and surface forming process"

Fig.2

Plow forward drawing and comparison"

Fig.3

Principle of in situ tilling plough"

Fig.4

Moisture content determination"

Fig.5

Calibration test of stacking angle"

Fig.6

Simulation test of soil accumulation angle"

Table 1

Box behnken test table for soil parameter calibration"

因素-101
X1/(J·m-2468
X20.150.350.55
X30.050.0750.1
X40.320.741.16

Table 2

Design scheme of soil accumulation angle test"

序号X1/(J·m-2X2X3X4堆积角/(°)
180.550.0750.7433.70
260.350.0500.3242.64
340.550.0750.7422.80
480.350.1000.7466.17
540.350.1000.7442.00
640.150.0750.7453.00
740.350.0751.1636.65
860.350.0750.7448.77
940.350.0500.7428.98
1060.550.0751.1626.04
1160.150.0500.7448.73
1260.150.0751.1652.60
1340.350.0750.3237.98
1460.350.0750.7453.41
1580.150.0750.7449.95
1660.550.1000.7432.07
1780.350.0750.3260.47
1860.350.0750.7449.09
1960.150.1000.7454.17
2080.350.0751.1663.05
2160.350.0750.7454.13
2260.550.0500.7421.45
2360.350.1000.3259.16
2480.350.0500.7457.18
2560.350.0501.1642.43
2660.550.0750.3228.06
2760.350.0750.7449.10
2860.150.0750.3254.92
2960.350.1001.1652.56

Table 3

Analysis of variance of stacking angle experimental design"

方差来源平方和自由度均方FP显著性
模型3977.0114284.0710.95<0.0001**
X1992.081992.0838.23<0.0001**
X21856.3011 856.3071.54<0.0001**
X3349.061348.0613.450.0025*
X48.1718.170.310.5836
X1X248.65148.651.870.1925
X1X34.0614.060.160.6984
X1X43.8213.820.150.7069
X2X36.7116.710.260.6191
X2X40.02310.0238.671E-0040.9769
X3X410.21110.210.390.5406
X125.3415.340.210.6571
X22676.451676.4526.070.0002*
X3213.75113.750.530.4787
X420.7010.700.0270.8719
残差363.261425.95
失拟项335.471033.554.830.0713
误差项27.7946.95
总和4340.2728

Fig.7

Simulation value of stacking angle"

Fig.8

Side view of plow body"

Fig.9

Top view of plow body"

Fig.10

Measurement of soil falling rate of original ditch"

Table 4

Range of parameters to be determined for plow body"

因素编码低水平(-)高水平(+)
耕深/mmX1200250
耕作幅宽/mmX2228312
犁铧安装角/(°)X33545
切土角/(°)X42530
导曲线提升角/(°)X519.5229.06
开度/mmX6140190
犁体长度/mmX7525.6642.4

Fig.11

Plough simulation test"

Table 5

Plackett Burman test table"

序号X1/mmX2/mmX3/(°)X4/(°)X5/(°)X6/mmX7/mmX8/(km·h-1X9X10X11原沟落土率/%
1250312353029.06190525.64.5-11-180.67
2200312452529.06190642.44.5-1-1178.12
3250228453019.52190642.47-1-1-179.48
4200312353029.06140642.471-1-178.44
5200228452529.06190525.6711-181.69
6200228353019.52190642.44.511179.89
7250228352529.06140642.47-11181.20
8250312352519.52190525.671-1183.65
9250312452519.52140642.44.511-177.53
10200312453019.52140525.67-11173.45
11250228453029.06140525.64.51-1180.55
12200228352519.52140525.64.5-1-1-183.48

Table 6

Effect evaluation of factors in Plackett-Burman experimental design"

因素效应系数标准误差贡献值平方和是否显著
截距79.850.22
X11.340.670.226.265.35
X2-2.40-1.200.2220.3117.35
X3-2.75-1.380.2226.5822.72
X4-2.20-1.100.2216.9714.50
X50.530.270.220.990.85
X61.480.740.227.646.53
X7-1.47-0.740.227.606.50
X8-0.39-0.190.220.530.45
X90.890.450.222.792.39
X10-1.55-0.770.228.427.19
X11-0.74-0.370.221.911.64

Table 7

Value of Box-Behnken optimization range"

因素-101
X1/mm240260280
X2/(°)384042
X3/(°)232527

Table 8

Box Behnken test table"

序号X1/mmX2/(°)X3/(°)原沟落土率%
1240382578.87
2280382580.21
3240422580.18
4280422580.52
5240402380.63
6280402380.87
7240402779.12
8280402780.21
9260382380.59
10260422381.75
11260382779.11
12260422780.14
13260402581.25
14260402581.17
15260402581.32
16260402580.91
17260402581.29

Table 9

Effect evaluation of various factors in Box-Behnken experimental design"

方差来源平方和自由度均方FP显著性
模型10.8291.2031.04<0.0001**
X11.1311.1329.250.0010**
X21.8111.8146.870.0002**
X33.4613.4689.33<0.0001**
X1X20.2510.256.460.0386*
X1X30.1810.184.670.0676
X2X30.01310.0130.110.7508
X122.1612.1655.830.0001**
X221.1711.1730.150.0009**
X320.2910.297.580.0284*
残差0.2770.039
失拟项0.1630.0541.970.2602
误差项0.1140.027
总和11.0916

Fig.12

Response surfaces of test factor on Soil falling rate of original ditch"

Fig.13

Plough body test"

1 宋卫堂.日光温室蔬菜生产全程机械化的一种解决方案[J].中国农机化学报,2018,39(9):26-29.
Song Wei-tang. A complete mechanization solution for greenhouse vegetable production[J]. Journal of Chinese Agricultural Mechanization, 2018, 39(9): 26-29.
2 付学谦,周亚中,孙宏斌,等.园区农业能源互联网:概念、特征与应用价值[J].农业工程学报,2020,36(12):152-161.
Fu Xue-qian, Zhou Ya-zhong, Sun Hong-bin,et al.Park-level agricultural energy internet:Concept, characteristic and application value[J].Transactions of the Chinese Society of Agricultural Engineering,2020,36(12):152-161.
3 骆飞,徐海斌,左志宇,等.我国设施农业发展现状、存在不足及对策[J].江苏农业科学,2020,48(10):57-62.
Luo Fei, Xu Hai-bin, Zuo Zhi-yu,et al.Current situation,deficiency and countermeasures of China's facility agriculture[J].Jiangsu Agricultural Sciences,2020,48(10):57-62.
4 刘霓红,蒋先平,程俊峰,等.国外有机设施园艺现状及对中国设施农业可持续发展的启示[J].农业工程学报,2018,34,42(15):1-9.
Liu Ni-hong, Jiang Xian-ping, Cheng Jun-feng,et al.Current situation of foreign organic greenhouse horticulture and its inspiration for sustainable development of Chinese protected agriculture[J].Transactions of the Chinese Society of Agricultural Engineering,2018,34,342(15):1-9.
5 熊平原,杨洲,孙志全,等.基于离散元法的旋耕刀三向工作阻力仿真分析与试验[J].农业工程学报,2018, 345(18): 113-121.
Xiong Ping-yuan, Yang Zhou, Sun Zhi-quan,et al.Simulation analysis and experiment for three-axis working resistances of rotary blade based on discrete element method[J].Transactions of the Chinese Society of Agricultural Engineering,2018,345(18):113-121.
6 秦柳. 国外设施农业发展的经验与借鉴[J]. 世界农业, 2015, 436(8): 143-146.
Qin Liu.The development experience and reference of facility agriculture abroad[J].World Agriculture,2015,436(8): 143-146.
7 马廷玺.土垡原地翻转横排犁[J].粮油加工与食品机械,1978(11): 49-51.
Ma Ting-xi.Horizontal plow of in-situ tilling soil[J].Cereals and Oils Processing,1978(11): 49-51.
8 Caky H B A, 王梦熊.几种类型的正面犁[J].粮油加工与食品机械, 1984(12): 30-32.
Caky H B A, Wang Meng-xiong.Several types of horizontal plows[J].Cereals and Oils Processing,1984(12): 30-32.
9 尤玉锴,陈伊文.对横排犁研究中几个问题的探讨[J].农业机械学报,1987(3):99-101.
You Yu-kai, Chen Yi-wen.The research and discussion of several problem about horizontal plow[J].Transactions of the Chinese Society for Agricultural Machinery,1987(3):99-101.
10 尤玉锴,刘明亮,白立群.横排犁犁面设计初探[J].农机化研究,1987(2):12-17.
You Yu-kai, Liu Ming-liang, Bai Li-qun.Preliminary study on the design of horizontal plow surface[J].Journal of Agricultural Mechanization Research,1987(3):12-17.
11 Junichi K, Wang Shi-xue. Study on a plow to invert furrow slice at the same position (Part 1)[J].Journal of JSAM, 1993, 55(3):15-22.
12 Wang Shi-xue, Junichi K. Study on a plow to invert furrow slice at the same position (Part 2)[J]. Journal of JSAM, 1993, 55(4):33-39.
13 Wang Shi-xue, Junichi K. Study on a plow to invert furrow slice at the same position (Patr 3)[J]. Journal of JSAM, 1995, 57(5):31-40.
14 宋发成,刘元义,邴坤,等.基于TRIZ理论的就地翻土犁设计[J].中国农机化学报,2019,40(4):13-18.
Song Fa-cheng, Liu Yuan-yi, Bing Kun,et al.Design of in-situ tilling plow based on TRIZ theory[J].Journal of Chinese Agricultural Mechanization,2019,40(4):13-18.
15 于圣洁,刘元义,胥备,等.设施农业就地翻土犁结构设计与仿真[J].中国农机化学报,2021,42(3):66-71.
Yu Sheng-jie, Liu Yuan-yi, Xu Bei,et al.Design and simulation of in - situ tilling plow in facility agriculture[J].Journal of Chinese Agricultural Mechanization,2021,42(3):66-71.
16 杨继鑫,戴华伟,王英俊,等.淄博烟区土壤中微量元素特征及重金属风险评价[J].中国烟草科学,2020,41(6):44-50.
Yang Ji-xin, Dai Hua-wei, Wang Ying-jun,et al. Distribution characteristics of medium and trace elements and risk assessments for heavy metals in soils in Zibo tobacco-planting region[J].Chinese Tobacco Science,2020,41(6):44-50.
17 魏建林,谭德水,宋效宗,等.鲁中典型种植区设施番茄养分供需特征研究[J].山东农业科学,2020,52(11):15-19, 45.
Wei Jian-lin, Tan De-shui, Song Xiao-zong,et al.Nutrient supply and demand characteristics of greenhouse tomato in typical planting area of central Shandong Province[J].Shandong Agricultural Sciences,2020,52(11):15-19, 45.
18 刁海忠,杨小三,李文全,等.桓台县土壤地球化学背景值及分区特征[J].山东国土资源,2021,37(4):41-47.
Diao Hai-zhong, Yang Xiao-san, Li Wen-quan,et al.Geochemical background values of soil and characteristics of geochemical divisions in Huantai County[J].Shandong Land and Resources,2021,37(4):41-47.
19 郑侃,何进,李洪文,等.基于离散元深松土壤模型的折线破土刃深松铲研究[J].农业机械学报,2016,47(9):62-72.
Zheng Kan, He Jin, Li Hong-wen,et al.Research on polyline soil-breaking blade subsoiler based on subsoiling soil model using discrete element method[J].Transactions of the Chinese Society for Agricultural Machinery,2016,47(9):62-72.
20 刘俊安. 基于离散元方法的深松铲参数优化及松土综合效应研究[D].北京:中国农业大学工学院,2018.
Liu Jun-an.Study on subsoiler parameters optimization and comprehensive effect of subsoiling based on the discrete element method[D].Beijing:College of Engineering, China Agricultural University,2018.
21 Aikins Kojo Atta, Mustafa Ucgul, Barr James B,et al. Determination of discrete element model parameters for a cohesive soil and validation through narrow point opener performance analysis[J]. Soil & Tillage Research, 2021, 213: No.105123.
22 李金展,马军涛,郑喜平.热处理工艺对65Mn犁铧力学性能的影响[J].热加工工艺,2017,46(4):215-217.
Li Jin-zhan, Ma Jun-tao, Zheng Xi-ping.Effect of heat treatment process on mechanical properties of 65 Mn ploughshare[J].Hot Working Technology,2017,46(4):215-217.
23 成大先.机械设计手册.单行本[M].北京:化学工业出版社,2004:5-7.
24 张喜瑞,曾望强,刘俊孝,等.基于离散元法的砖红壤斜柄折翼式深松铲设计与试验[J].农业机械学报,2022,53(3):40-49.
Zhang Xi-rui, Zeng Wang-qiang, Liu Jun-xiao,et al.Design and experiment of iateritic soil inclined handle folding wing subsoiling shovel based on discrete element method[J].Transactions of the Chinese Society for Agricultural Machinery,2022,53(3):40-49.
25 李宝筏.农业机械学[M].北京:中国农业出版社,2016:321-322.
26 习慧梅.温室大棚设施菜地土壤改良技术[J].农村实用技术,2016(3):28-31.
Xi Hui-mei.Soil improvement techniques in greenhouses[J].Practical Technologies of Rural Areas,2016(3):28-31.
27 赵江涛,崔方,张小平,等.设施农业土壤改良浅谈[J].西北园艺(综合),2021(1):36-37.
Zhao Jiang-tao, Cui Fang, Zhang Xiao-ping,et al.Description of soil improvement in facility agriculture[J].Northwest Horticulture,2021(1):36-37.
28 中国农业机械化科学研究院.农业机械设计手册[M].北京:中国农业科学技术出版社,2007.
29 李光聚,刘天英,李秀欣,等.寿光日光温室的发展历程及创新点[J].中国蔬菜,2019(10):14-18.
Li Guang-ju, Liu Tian-ying, Li Xiu-xin,et al.The development history and innovation points of Shouguang solar greenhouse[J].China Vegetables,2019(10):14-18.
30 康建. 日光温室深旋机设计与试验研究[D].沈阳:沈阳农业大学工程学院,2020.
Kang Jian.Design and experimental study of deep rotary machine in solar greenhouse[D].Shenyang:College of Engineering, Shenyang Agricultural University,2020.
31 刘静,孙闫.设施大棚履带电动拖拉机电源系统仿真研究[J].机械工程师,2021(2):59-62.
Liu Jing, Sun Yan.Simulation study on power supply system of a crawler electric tractor for greenhouses[J].Mechanical Engineer,2021(2):59-62.
32 翟力欣,姬长英,丁启朔,等.犁体结构参数与工作参数优化设计[J].农业机械学报,2013,44(8):57-62.
Zhai Li-xin, Ji Chang-ying, Ding Qi-shuo,et al.Optimized design of plough body structural and working parameters[J].Transactions of the Chinese Society for Agricultural Machinery,2013,44(8):57-62.
33 郑乐,罗锡文,曾山,等.水稻根茬-土壤复合体剪切特性试验[J].农业机械学报,2017,48(5):63-71.
Zheng Le, Luo Xi-wen, Zeng Shan,et al.Shear characteristics of rice root-soil composite[J].Transactions of the Chinese Society for Agricultural Machinery,2017,48(5):63-71.
34 葛宜元.试验设计方法与Design-Expert软件应用[M].哈尔滨:哈尔滨工业大学出版社,2014.
[1] Yan-an ZHANG,Yue-feng DU,Qing-feng MENG,Xiao-yu LI,Lei LIU,Zhong-xiang ZHU. Adaptive control of wet clutch pressure based on improved genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 852-864.
[2] Xue-shen CHEN,Yue-song XIONG,Nan CHENG,Xu MA,Long QI. Adaptive vibration type flexible mechanical weeding test between rice plants [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 375-384.
[3] Yi LI,Chen-yang LYU,Ji-cai LIANG,Ce LIANG. Section deformation analysis of irregular Y-shaped aluminum profile of multi-point stretch-bending process [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 105-113.
[4] Yong-shuo WANG,Jian-ming KANG,Qiang-ji PENG,Ying-kai CHEN,Hui-min FANG,Meng-meng NIU,Shao-wei WANG. Design and experiment of obstacle avoidance weeding machine for fruit trees [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2410-2420.
[5] Xiao-jun JIN,Yan-xia SUN,Jia-lin YU,Yong CHEN. Weed recognition in vegetable at seedling stage based on deep learning and image processing [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2421-2429.
[6] Feng LYU,Nian LI,Zhuang-zhuang FENG,Yang-hang ZHANG. Method of collaborative filtering recommendation of personalized product-service system based on user [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1935-1942.
[7] Shou-yong XIE,Xiao-liang ZHANG,Fan-yi LIU,Jun LIU,Xiao-liang YUAN,Wei LIU,Peng WANG. Kinetic analysis and experiment of seedling taking and throwing device based on mechanical properties of plug seedlings [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3293-3304.
[8] Duan-yang GENG,Yan-cheng SUN,Zong-yuan WANG,Qi-huan WANG,Jia-rui MING,Hao-lin YANG,Hai-gang XU. Design and experiment of plate tooth threshing device of corn grain direct harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3281-3292.
[9] Bin WANG,Bing-hui HE,Na LIN,Wei WANG,Tian-yang LI. Tea plantation remote sensing extraction based on random forest feature selection [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1719-1732.
[10] Duan-yang GENG,Yan-cheng SUN,Xiao-dong MU,Guo-dong ZHANG,Hui-xin JIANG,Jun-ke ZHU. Simulation test and optimization of grain breakage of silage maize based on differential roller [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 693-702.
[11] Chang-kai WEN,Bin XIE,Zheng-he SONG,Jian-gang HAN,Qian-wen YANG. Design method of tractor durability accelerated structure test [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 703-715.
[12] Jian-ping LI,Yong-liang BIAN,Xin YANG,Peng-fei WANG,Xin-hao LI,Chun-lin XUE. Operational parameter optimization and testing of an air-assisted multi-fan orchard sprayer [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2474-2485.
[13] Guo-wei WANG,Qing-hui ZHU,Hai-ye YU,Dong-yan HUANG. Silage traceability system based on digital agricultural machinery equipment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 242-252.
[14] Fang LIANG,De-cheng WANG,Yong YOU,Guang-hui WANG,Yu-bing WANG,Xiao-ming ZHANG,Jin-kui FENG. Design and experiment of root-cutter with fertilization and reseeding compound remediation machine for grassland [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 231-241.
[15] Xin-yan WANG,Quan JIANG,Feng LYU,Zheng-yang YI. Rollover stability of zero turning radius lawn mower based on parametric model [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1908-1918.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!