Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (5): 1214-1220.doi: 10.13229/j.cnki.jdxbgxb.20221577

Previous Articles    

Multi-objective optimization of parameters of automotive mechanical automatic transmission system based on particle swarm optimization

Tao CHEN1(),Zhi-gang ZHOU2,Nan-nan LEI1   

  1. 1.College of Applied Engineering,Henan University of Science And Technology,Sanmenxia 471023,China
    2.School of Vehicle and Traffic Engineering,Henan University of Science and Technology,Luoyang 471023,China
  • Received:2022-12-09 Online:2024-05-01 Published:2024-06-11

Abstract:

Auto mechanical automatic transmission system can not meet the operation requirements of low energy consumption and high power at the same time. In order to improve the operation performance of the transmission system, a multi-objective optimization of auto mechanical automatic transmission system parameters based on particle swarm optimization algorithm is proposed. This method first learns and analyzes the overall dynamic model of the vehicle and the motor efficiency, then establishes the objective function according to the maximum speed, acceleration performance and climbing performance of the vehicle during driving, and finally uses particle swarm optimization algorithm to solve the optimal solution of the objective function, uses the inertia weight of the vehicle during driving to make the global search ability reach a balanced state, and realizes automatic particle optimization based on the learning factor, To realize the multi-objective optimization of the parameters of the automotive mechanical automatic transmission system. The experimental results show that the proposed method has low energy consumption, high operating efficiency and good dynamic performance. It can effectively improve the operation performance of the mechanical automatic transmission system of automobiles, and has a certain role in promoting the non delayed transmission of automobiles.

Key words: particle swarm optimization, automatic transmission system, multi objective optimization, hub motor, objective function

CLC Number: 

  • TP391.4

Fig.1

Flow chart of particle swarm optimization"

Fig.2

Simulation diagram of two-speed transmission system"

Table 1

Main parameters of transmission system"

参数数值
汽车行驶最高速度/(km·h-1120
加速度/(m·s-26
最大爬坡度/%40
主减速器比3.97
发动机额定转速/(r·min-12500
发动机最大转速/(r·min-16000
一挡速比9
二挡速比9

Fig.3

Comparison of power performance after optimization by various methods"

Fig.4

Variable speed operation efficiency after optimization of each method"

Table 2

Comparison of energy consumption after optimization of each method"

时间本文方法文献[1]方法文献[2]方法文献[3]方法
1×1031.351.472.351.56
2×1032.573.464.253.42
3×104.627.796.346.79
4×1037.219.8110.669.83
5×1038.9711.4412.3510.24
1 李聪波, 余必胜, 陈睿杰, 等. 电动汽车无动力中断两挡变速系统参数集成优化[J]. 计算机集成制造系统, 2020, 26(9): 2453-2462.
Li Cong-bo, Yu Bi-sheng, Chen Rui-jie, et al. Integrated optimization of two-speed transmission system parameters for electric vehicle without power interruption[J]. Computer Integrated Manufacturing Systems, 2020, 26(9): 2453-2462.
2 张军, 张卫忠, 李宏玲. 基于FTA的变速器参数优化设计[J]. 西安文理学院学报: 自然科学版, 2020, 23(3): 57-61.
Zhang Jun, Zhang Wei-zhong, Li Hong-ling. Optimization design of transmission parameters based on fault tree analysis(FTA)[J]. Journal of Xi'an University of Arts and Sciences (Natural Science Edition), 2020, 23(3): 57-61.
3 杜常清, 曹锡良, 何彪, 等. 基于混合粒子群算法的双离合变速器参数优化设计[J]. 吉林大学学报: 工学版, 2020, 50(5): 1556-1564.
Du Chang-qing, Cao Xi-liang, He Biao, et al. Parameters optimization of dual clutch transmission based on hybrid particle swarm optimization[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(5): 1556-1564.
4 管欣, 金号, 段春光, 等. 汽车行驶道路侧向坡度估计[J]. 吉林大学学报: 工学版, 2019, 49(6): 1802-1809.
Guan Xin, Jin Hao, Duan Chun-guang, et al. Estimation of lateral slope of vehicle driving road[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(6): 1802-1809.
5 王文杰, 闫浩, 邹继斌, 等. 基于混合脉宽调制技术的永磁同步电机过调制区域相电流重构策略[J]. 中国电机工程学报, 2021, 41(17): 6050-6060.
Wang Wen-jie, Yan Hao, Zou Ji-bin, et al. Phase current reconstruction strategy of PMSM under overmodulation mode based on a hybrid space vector pulse width modulation technique[J]. Proceedings of the CSEE, 2021,41 (17): 6050-6060.
6 彭思仑, 李兴忠, 张京旭, 等. 基于总线技术的自动变速器整车性能试验[J]. 实验室研究与探索, 2020, 39(9): 27-31.
Peng Si-lun, Li Xing-zhong, Zhang Jing-xu, et al. Research on vehicle performance test of automatic manual transmission based on bus technology[J]. Research and Exploration in Laboratory, 2020, 39(9): 27-31.
7 曹晓月, 张旭秀. 学习因子随权重调整的混合粒子群算法[J]. 计算机技术与发展, 2020, 30(11): 30-36.
Cao Xiao-yue, Zhang Xu-xiu. Research of simplified particle swarm optimization algorithm with weight and learning factor[J]. Computer Technology and Development, 2020, 30(11): 30-36.
8 马立新, 徐嘉辉, 杨天笑. 基于MPSO算法含电动汽车的微网优化调度[J]. 电网与清洁能源, 2020, 36(8): 116-122.
Ma Li-xin, Xu Jia-hui, Yang Tian-xiao. Optimal scheduling of microgrid with electric vehicles based on MPSO algorithm[J]. Power System and Clean Energy, 2020, 36(8): 116-122.
9 吉协福, 刘祚时. 基于粒子群算法纯电动汽车传统优化设计[J]. 机械设计与制造, 2022, 43(5): 60-63.
Ji Xie-fu, Liu Zuo-shi. Optimization design of pure electric vehicle transmission system based on particle swarm optimization[J]. Machinery Design & Manufacture, 2022, 43(5): 60-63.
10 郝正君, 杨柳青. 基于改进粒子群算法的车辆液压悬架系统自适应阻抗控制[J]. 湖南科技大学学报: 自然科学版, 2020, 35(3): 85-92.
Hao Zheng-jun, Yang Liu-qing. Adaptive impedance control of vehicle hydraulic suspension system based on improved particle swarm optimization algorithm[J]. Journal of Hunan University of Science Technology (Natural Science Edition), 2020, 35(3): 85-92.
11 牛礼民, 张泉泉, 朱奋田, 等. 基于全局优化算法的增程式电动汽车模糊控制策略[J]. 重庆交通大学学报: 自然科学版, 2022, 41(2): 137-145.
Niu Li-min, Zhang Quan-quan, Zhu Fen-tian, et al. Fuzzy control strategy for extended range electric vehicle based on global optimization algorithm[J]. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(2): 137-145.
[1] Ya-dong GONG,Ming-xiang DING,Xiang LI,Jin-min TIAN. Milling analysis and parameter optimization for TC4 titanium alloy material [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 917-925.
[2] Jian-hua LI,Ze-ding WANG. Planning of urban car distributed charging pile point selection considering path time-consuming [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2298-2303.
[3] Guo-jin TAN,Qing-wen KONG,Xin HE,Pan ZHANG,Run-chao YANG,Yang-jun CHAO,Zhong YANG. Bridge scour depth identification based on dynamic characteristics and improved particle swarm optimization algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1592-1600.
[4] Jian WU,Bin XU. Displacement interval prediction model and simulation of accumulation landslide based on ceemdan theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 562-568.
[5] Jie LI,Chang-wang JIA,Qi ZHAO. Solution of nonlinear equilibrium state of vehicle steering and its stability determination [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3326-3334.
[6] Zheng ZHANG,Qi-dan ZHU,Xiao-long LYU,Xing FAN. Optimized method for solving inverse kinematics of redundant manipulator [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3379-3387.
[7] Pei-ran YING,Xiao-qing ZENG,Tuo SHEN,Teng-fei YUAN,Hai-feng SONG,Yi-zeng WANG. Redundant operation code-based intelligent algorithm for energy⁃efficient driving of high-speed train [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3404-3414.
[8] Yong-gang CHEN,Ji-ye XU,Hai-yong WANG,Wen-xiang XIONG. Fault diagnosis method of point machine based on adaptive neural fuzzy inference network system [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3274-3280.
[9] Jin-wu GAO,Zhi-huan JIA,Xiang-yang WANG,Hao XING. Degradation trend prediction of proton exchange membrane fuel cell based on PSO⁃LSTM [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2192-2202.
[10] Chong ZHANG,Yun-feng HU,Xun GONG,Yao SUN. Design of model⁃free adaptive sliding mode controller for cathode flow of fuel cell [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2085-2095.
[11] Ren-chu GUAN,Bao-run HE,Yan-chun LIANG,Xiao-hu SHI. Particle swarm optimization algorithm based on kinship selection [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1842-1849.
[12] Zhen SONG,Jie LIU. Time series prediction algorithm of vibration frequency of rotating machinery [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1764-1769.
[13] Jing QIN,De ZHENG,Yi-qiang PEI,Yong LYU,Qing-peng SU,Ying-bo WANG. Prediction method of engine performance and emission based on PSO-GPR [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1489-1498.
[14] Zhen WANG,Meng GAI,Heng-shuo XU. Surface reconstruction algorithm of 3D scene image based on virtual reality technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1620-1625.
[15] Hai-yan XING,Chao LIU,Cheng XU,Yu-huan CHEN,Song-hong-ze WANG. Quantitative metal magnetic memory classification model of weld grades based on particle swarm optimization fuzzy C⁃means [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 525-532.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!