Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (10): 2837-2848.doi: 10.13229/j.cnki.jdxbgxb.20221523

Previous Articles    

Intelligent compaction quality assessment of earth-rock dams considering small samples uncertainty

Qing-long ZHANG1(),Nai-fu Deng1,Zai-zhan AN2,Rui MA3,Yu-fei ZHAO4()   

  1. 1.Department of Civil Engineering,University of Science and Technology Beijing,Beijing 100083,China
    2.China Electric Power Planning and Engineering Institute,Beijing 100011,China
    3.State Key Laboratory of Hydroscience and Engineering,Tsinghua University,Beijing 100084,China
    4.Key Laboratory of Construction and Safety of Water Engineering of the Ministry of Water Resources,China Institute of Water Resources and Hydropower Research,Beijing 100048,China
  • Received:2022-11-28 Online:2024-10-01 Published:2024-11-22
  • Contact: Yu-fei ZHAO E-mail:qlzhang@ustb.edu.cn;zhaoyf@iwhr.com

Abstract:

In light of the poor real-time performance, low accuracy, weak generalization, insufficient training data and susceptible to the external changes in compaction quality assessment of earth-rock dams. This paper proposes a compaction quality assessment model based on the binary muti-population genetic algorithm fused back propagation neural network. This model addresses the problem of small sample learning in the intelligent compaction assessment of rockfill materials on-site by adjusting the transfer activation function, improving the migration updating mechanism, and constructing a training loss function considering the epistemic uncertainty and aleatoric uncertainty. The results show that the assessment performance of the proposed model is better than 9 comparison models, and the combinatorial uncertainty can improve the generalization and data error tolerance of the model, which features generalizability and application value in other engineering scenarios.

Key words: hydraulic engineering, earth-rock dam, rockfill material, compaction quality assessment, uncertainty analysis, neural network

CLC Number: 

  • TV523

Fig.1

Research framework"

Fig.2

BP network"

"

输入: V: 各种群个体数; U: 种群数; Z: 得到最优解的最大迭代周期; N: BP网络的训练迭代次数; M: 适应度差异阈值; F: 组合比例(F0,1

输出: Ioptimal: 包含边权重矩阵和偏置向量的最优个体; Loptimal: 最优个体适应度

1

初始化 i=0NΦ=0; Iu,vVUZNMF

2

while iZ

3

?i=i+1

4

for j=1:U do

5

??选择操作;

6

??交叉操作;

7

??变异操作;

8

for j=1:U

9

???进行N次BP神经网络训练;

10

???计算每个个体适应度;

11

??end

12

?end

13

for k=1:MP do

14

??ifLu0,worst-Lu,best>M,?uN?uu0

15

???NΦ=NΦ+1

16

??end

17

for k=1:MP do

18

if NΦ<U/2

19

???Iu0,worst=Iu-1,best

20

??else

21

???Iu0,worst=Iu0,worst+F(Iu-1,best-Iu1,best)

22

??end

23

?end

24

for l=1:MP do

25

??筛选每个种群的最优个体Iu,best及其适应度 Lu,best

26

?end

27

?比选筛分最优个体Ibest及其Lbest

28

end

Fig.3

An example of dropout operation in BP network"

Fig.4

Test field on clay core wall earth-rock dam engineering site"

Fig.5

Grain curve of rockfill"

Fig.6

Process of field rolling test"

Table 1

Operation conditions of field test"

工况 编号振动频率/ kHz行车速度/ (m·s-1行驶方向碾压遍数
1200.6反向1、3、7
2200.6正向2、6
3200.55正向4、8
4200.7反向5
5240.69反向1、3、5、7
6240.69正向2、6、8
7240.73正向4
8280.6反向1、3、7
9280.6正向4、6、8
10280.65正向2
11320.69反向1、3、5、7
12320.69正向2、4、6、8

Fig.7

Correlation analysis matrix"

Fig.8

Compaction quality assessment results of proposed model"

Table 2

Comparison of compaction quality assessment methods"

评估模型R2MAPE/%RMSE/%
RBF0.847 04.364 14.484 2
ELM0.669 110.495 79.700 1
LSTM0.750 313.929 912.802 2
BP0.706 68.179 88.164 4
PSO-BP0.669 18.237 47.684 1
DE-BP0.734 65.828 85.738 1
MPDE-BP0.847 05.194 55.249 0
GA-BP0.771 27.340 97.404 4
MPGA-BP0.903 33.408 73.241 0
本文模型0.937 83.054 72.948 3

Fig.9

Uncertainty analysis of compaction quality assessment"

Fig.10

Aleatoric uncertainty analysis under the noise with an intensity of 3"

1 陈祖煜, 赵宇飞, 邹斌, 等. 大坝填筑碾压施工无人驾驶技术的研究与应用[J]. 水利水电技术, 2019, 50(8): 1-7.
Chen Zu-yu, Zhao Yu-fei, Zou Bin, et al. Study and application of unmanned driving technology or filling and rolling construction of earth-rockfill dam[J]. Water Resources and Hydropower Engineering, 2019, 50(8): 1-7.
2 李庆斌, 马睿, 胡昱, 等. 大坝智能建造研究进展与发展趋势[J]. 清华大学学报:自然科学版, 2022, 62 (8): 1252-1269.
Li Qing-bin, Ma Rui, Hu Yu, et al. A review of intelligent dam construction techniques[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(8): 1252-1269.
3 刘东海, 高雷. 基于碾振性态的土石坝料压实质量监测指标分析与改进[J]. 水力发电学报, 2018, 37(4): 111-120.
Liu Dong-hai, Gao Lei. Analysis and improvement of roller vibration behavior-based indexes for monitoring compaction quality of earth-rock dams[J]. Journal of Hydroelectric Engineering, 2018, 37(4): 111-120.
4 王飞. 基于碾压质量实时监控的高心墙堆石坝沉降变形分析理论与应用[D]. 天津: 天津大学建筑工程学院,2017.
Wang Fei. Theory and application of high core rockfill dam settlement analysis based on real-time monitoring of rolling-compaction quality[D]. Tianjin: School of Civil Engineering,Tianjin University, 2017.
5 刘东海, 刘志磊, 冯友文. 堆石坝料压实监测指标影响因素及适用性分析[J]. 水力发电学报, 2019, 38(6): 1-10.
Liu Dong-hai, Liu Zhi-lei, Feng You-wen. Analysis on applicability and influence factors of real-time monitoring compaction indexes for rockfill dam materials[J]. Journal of Hydroelectric Engineering, 2019, 38(6): 1-10.
6 林威伟, 钟登华, 胡炜, 等. 基于随机森林算法的土石坝压实质量动态评价研究[J]. 水利学报, 2018, 49(8): 945-955.
Lin Wei-wei, Zhong Deng-hua, Hu Wei, et al. Study on dynamic evaluation of compaction quality of earth rock dam based on random forest[J]. Journal of Hydraulic Engineering, 2018, 49(8): 945-955.
7 潘恒彦, 张文会, 梁婷婷, 等. 基于MIMIC与机器学习的出租车驾驶员交通事故诱因分析[J]. 吉林大学学报:工学版, 2023, 53(2): 457-467.
Pan Heng-yan, Zhang Wen-hui, Liang Ting-ting, et al. Inducement analysis of taxi drivers' traffic accidents based on MIMIC and machine learning[J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 532(2):457-467.
8 Wang J J, Zhong D H, Wu B P, et al. Evaluation of compaction quality based on SVR with CFA: case study on compaction quality of earth-rock dam[J]. J Comput Civ Eng, 2018, 32(3): No.05018001.
9 朱冰, 范天昕, 赵健, 等. 基于危险边界搜索的自动驾驶系统加速测试方法[J]. 吉林大学学报:工学版, 2023, 53(3): 704-712.
Zhu Bing, Fan Tian-xin, Zhao Jian, et al. Accelerate test method of automated driving system based on hazardous boundary search[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(3): 704-712.
10 王佳俊, 钟登华, 关涛, 等. 基于KM和AC-BFA模糊逻辑的土石坝压实质量实时评价[J]. 水力发电学报, 2019, 38(3): 165-178.
Wang Jia-jun, Zhong Deng-hua, Guan Tao, et al. Real-time evaluation of compaction quality of earth-rock dams using fuzzy logic based on KM and AC-BFA[J]. Journal of Hydroelectric Engineering, 2019, 38(3): 165-178.
11 Wang F, Zhong D H, Yan Y L, et al. Rockfill dam compaction quality evaluation based on cloud-fuzzy model[J]. Journal of Zhejiang University-Science A, 2018, 19(4): 289-303.
12 安再展, 刘天云, 皇甫泽华, 等. 利用CMV评估堆石料压实质量的神经网络模型[J]. 水力发电学报, 2020,39(4): 110-120.
An Zai-zhan, Liu Tian-yun, Ze-hua Huangpu, et al. Neural network model for evaluating compaction quality of rockfill materials by compaction meter value[J]. Journal of Hydroelectric Engineering, 2020, 39(4): 110-120.
13 刘彪, 赵宇飞, 陈祖煜, 等. 基于碾压波速的堆石坝压实质量实时监测指标的研究[J]. 中国水利水电科学研究院学报, 2022, 20(1): 20-29.
Liu Biao, Zhao Yu-fei, Chen Zu-yu, et al. Study on real-time monitoring index for rockfil dam compaction quality based on rolling wave velocity[J]. Journal of China Institute of Water Resources and Hydropower Research, 2022, 20(1): 20-29.
14 Wang X, Dong X, Zhang Z, et al. Compaction quality evaluation of subgrade based on soil characteristics assessment using machine learning[J]. Transportation Geotechnics, 2022, 32: No.100703.
15 Terbuch A, Zöhrer A, Winter V, et al. Quality monitoring in vibro ground improvement—a hybrid machine learning approach[J]. Geomechanics and Tunnelling, 2022, 15(5): 658-664.
16 Wang X F, Cheng C, Li J L, et al. Automated monitoring and evaluation of highway subgrade compaction quality using artificial neural networks[J]. Automation in Construction, 2023, 145:No.104663.
17 An Z Z, Liu T Y, Zhang Z S, et al. Dynamic optimization of compaction process for rockfill materials[J]. Automation in Construction, 2020, 110: No.103038.
18 Liu B, Zhao Y, Wang W, et al. Compaction density evaluation model of sand-gravel dam based on Elman neural network with modified particle swarm optimization[J]. Frontiers in Physics, 2022, 9:No.806231.
19 Hong Y, Tian Z H, Sun X. Dynamic evaluation for compaction quality of roller compacted concrete based on reliability metrics[J]. Journal of Construction Engineering and Management, 2020, 146 (10): No.4020123.
20 Wang J J, Zhong D H, Adeli H, et al. Smart bacteria-foraging algorithm‐based customized kernel support vector regression and enhanced probabilistic neural network for compaction quality assessment and control of earth-rock dam[J]. Expert Systems, 2018, 35(6): No.e12357.
21 Zhang Q, Zhu Y, He L, et al. Assessment of roller-integrated compaction monitoring indexes for low-liquid-limit silt based on roller vibratory acceleration analysis[J]. Journal of Transportation Engineering, Part B: Pavements, 2023,149(4): No.04023020.
22 Zhang Q, Liu T, Zhang Z, et al. Compaction quality assessment of rockfill materials using roller-integrated acoustic wave detection technique[J]. Automation in Construction, 2019, 97: 110-121.
23 Wang X, Cheng C, Zhang J, et al. Real-time monitoring and quality assessment of subgrade compaction: key factors and ANN model[J]. Acta Geotechnica, 2022: 1-18.
24 Liu M, Wang X, Wang J, et al. Comprehensive evaluation for real-time compaction quality using i-AHP and i-GAM: case study of earth-rock dam[J]. Applied Sciences, 2019, 9(8): No.1543.
25 Zhang Q, An Z, Liu T, et al. Intelligent rolling compaction system for earth-rock dams[J]. Automation in Construction, 2020, 116:No.103246.
26 Committe D. Test method for unconfined compressive strength of cohesive soil[J]. ASTM International: West Conshohocken, USA, 2016:1-22.
27 White D J, Rupnow T D, Ceylan H. Influence of Subgrade/subbase Non-uniformity on PCC Pavement Performance[M]. New York: American Society of Civil Engineers(ASCE), 2004: 1058-1065.
28 Anderegg R, Kaufmann K. Intelligent compaction with vibratory rollers: feedback control systems in automatic compaction and compaction control[J]. Transportation Research Record, 2004, 1868(1): 124-134.
29 Thompson M J, White D J. Estimating compaction of cohesive soils from machine drive power[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(12): 1771-1777.
30 张家玲, 徐光辉, 蔡英. 连续压实路基质量检验与控制研究[J]. 岩土力学, 2015, 36(4): 1141-1146.
Zhang Jia-ling, Xu Guang-hui, Cai Ying. An investigation on quality inspection and control for continuously compacting subgrade[J]. Rock and Soil Mechanics, 2015, 36(4): 1141-1146.
31 Liu D H, Lin M, Li S. Real-time quality monitoring and control of highway compaction[J]. Automation in Construction, 2016, 62: 114-123.
32 王涛. 动态系统思想: 理论和语言研究[M]. 南京:东南大学出版社, 2014.
33 Van Ravenzwaaij D, Cassey P, Brown S D. A simple introduction to Markov Chain Monte-Carlo sampling[J]. Psychonomic Bulletin & Review, 2018, 25 (1): 143-154.
34 Gal Y, Ghahramani Z. Dropout as a bayesian approximation: representing model uncertainty in deep learning[DB/OL].[2022-10-26]..
35 Lakshminarayanan B, Pritzel A, Blundell C. Simple and scalable predictive uncertainty estimation using deep ensembles[C]∥Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017.
[1] Lei SHANG,Ping YANG,Xiang-guo YANG,Jian-xin PAN,Jun YANG,Meng-ru ZHANG. Temperature control of proton exchange membrane fuel cell thermal management system based on APSO-BP-PID control strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2401-2413.
[2] Chao-lu TEMUR,Ya-ping ZHANG. Link anomaly detection algorithm for wireless sensor networks based on convolutional neural networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2295-2300.
[3] Hong-wei ZHAO,Hong WU,Ke MA,Hai LI. Image classification framework based on knowledge distillation [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2307-2312.
[4] Jin-zhou ZHANG,Shi-qing JI,Chuang TAN. Fusion algorithm of convolution neural network and bilateral filtering for seam extraction [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2313-2318.
[5] Sheng-jie ZHU,Xuan WANG,Fang XU,Jia-qi PENG,Yuan-chao WANG. Multi-scale normalized detection method for airborne wide-area remote sensing images [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2329-2337.
[6] Guang-bao LI,Dong GAO,Yong LU,Hao PING,Yuan-yuan ZHOU. Internal surface treatment of gas-liquid-solid technology based on improved neural network and Fluent [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1537-1547.
[7] Xi-jun ZHANG,Guang-jie YU,Yong CUI,Ji-yang SHANG. Short-term traffic flow prediction based on clustering algorithm and graph neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1593-1600.
[8] Xiao-hui WEI,Chen-yang WANG,Qi WU,Xin-yang ZHENG,Hong-mei YU,Heng-shan YUE. Systolic array-based CNN accelerator soft error approximate fault tolerance design [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1746-1755.
[9] Ming-hui SUN,Hao XUE,Yu-bo JIN,Wei-dong QU,Gui-he QIN. Video saliency prediction with collective spatio-temporal attention [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1767-1776.
[10] Xi-guang ZHANG,Long-fei ZHANG,Yu-xi MA,Yin-ting FAN. Design of fuzzy clustering algorithm for massive cloud data based on density peak [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1401-1406.
[11] Chao XIA,Meng-jia WANG,Jian-yue Zhu,Zhi-gang YANG. Reduced-order modelling of a bluff body turbulent wake flow field using hierarchical convolutional neural network autoencoder [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 874-882.
[12] Guo-jun YANG,Ya-hui QI,Xiu-ming SHI. Review of bridge crack detection based on digital image technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 313-332.
[13] Hai-long GAO,Yi-bo XU,Kun LIU,Chun-yang LI,Xiao-yu LU. High-speed highway road network short-term traffic flow parameters based on multi-source data fusion prediction [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 155-161.
[14] Shuang LI,Zi-rui LIN,Song YE,Xu LIU,Ji-song ZHAO. Orbital capability evaluation and trajectory reconstruction for launch vehicle with thrust decline [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2245-2253.
[15] Xiang-jiu CHE,Huan XU,Ming-yang PAN,Quan-le LIU. Two-stage learning algorithm for biomedical named entity recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2380-2387.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!