Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (12): 3534-3544.doi: 10.13229/j.cnki.jdxbgxb.20230082

Previous Articles     Next Articles

Parameter correction of probabilistic finite element benchmark model based on deep foundation pit construction

Ya-feng GONG1(),Bai-xin LIU1,Jian-xing YANG1,Feng HE1(),Liang SUN2,Li-hua TIAN1   

  1. 1.Transportation College of Jilin University,Changchun 130022,China
    2.China Railway Tunnel Group Road & Bridge Engineering Co. ,Ltd. ,Tianjin 300308,China
  • Received:2023-01-30 Online:2024-12-01 Published:2025-01-24
  • Contact: Feng HE E-mail:gongyf@jlu.edu.cn;hefeng@jlu.edu.cn

Abstract:

In order to account for the variations in construction progress, the material parameters, connection stiffness, and boundary conditions of the deep foundation pit are modified. This results in the utilization of traditional deterministic finite element modeling parameter method being inefficient, slow, and difficult to converge. The following problem is proposed to address this issue: The probabilistic finite element parameter correction of the baseline model concept involves the establishment of a characterization of the subway deep foundation pit in the different stages of the construction of physical parameters. In essence, a finite element model is established to characterize the changing law of physical parameters in different construction stages of subway deep foundation pit. Initially, the Gaussian mixture model is employed to partition the maximum horizontal displacement of the enclosure wall into multiple clusters, thereby extracting the mean value and variance. Subsequently, the ANSYS finite element deep foundation pit model is configured, and finite element corrections are implemented on the parameters of internal support and enclosure wall of the deep foundation pit. Finally, the probabilistic baseline of the deep foundation pit finite element model for cluster analysis is obtained by using the Kriging prediction model instead of the analytical finite element. The results show that the computational rate and accuracy of the baseline model are significantly improved after the parameter correction, which can provide a theoretical basis for the subsequent numerical simulation.

Key words: geotechnical engineering, deep foundation pit, finite element, retaining wall, horizontal displacement, parameter correction

CLC Number: 

  • TV551.4

Fig.1

Plane diagram of foundation pit"

Fig.2

Vertical section diagram of foundation pit"

Fig.3

Horizontal displacement cluster analysis diagram of retaining wall"

Fig.4

Foundation pit finite element model diagram"

Table 1

Parameters of retaining wall"

参数待修正参数对象修正前参数值修正后参数值
θ1围护墙弹性模量3.0×1010 Pa1.93×1010 Pa
θ2混凝土支撑弹性模量3.2×1010 Pa2.10×1010 Pa
θ3钢支撑弹性模量2.1×1011 Pa1.74×1011 Pa

Fig.5

Relative error diagram of horizontal displacement of retaining wall"

Fig.6

Comparison diagram of east side retaining wall parameters before and after correction"

Fig.7

Comparison diagram of north side retaining wall parameters before and after correction"

Fig.8

Comparison diagram of west side retaining wall parameters before and after correction"

Fig.9

Comparison diagram of south side retaining wall parameters before and after correction"

1 杨朋超,薛松涛,谢丽宇. 结构动力模型的改进直接修正方法及工程应用[J]. 建筑结构学报, 2021, 42(3): 34-40.
Yang Peng-chao, Xue Song-tao, Xie Li-yu. An improved direct method for dynamic model updating and its practical engineering applications[J]. Journal of Building Structures, 2021, 42(3): 34-40.
2 张皓,李东升,李宏男. 有限元模型修正研究进展:从线性到非线性[J]. 力学进展, 2019, 49(1): 542-575.
Zhang Hao, Li Dong-sheng, Li Hong-nan. Recent progress on finite element model updating: from linearity to nonlinearity[J]. Advances in Mechanics, 2019, 49(1): 542-575.
3 徐志强,王彬,王海龙,等. 基于监测数据的桁架拱桥有限元模型修正[J]. 河北建筑工程学院学报, 2019, 37(4): 67-73.
Xu Zhi-qiang, Wang Bin, Wang Hai-long. Modification of finite element model of truss arch bridge based on monitoring data[J]. Journal of Hebei Institute of Architecture and Civil Engineering, 2019, 37(4): 67-73.
4 文竞舟,张永兴,王成,等. 钢拱架应力反分析隧道初期支护力学性能的研究[J]. 土木工程学报, 2012, 45(2): 170-175.
Wen Jing-zhou, Zhang Yong-xing, Wang Cheng, et al. Back analysis for the mechanical properties of initial tunnel support based on steel arch stresses[J]. China Civil Engineering Journal, 2012, 45(2): 170-175.
5 杨林德,王聿,陆峰. 初始地应力及E值的反演计算的边界单元法[C]∥中国土木工程学会隧道与地下工程学会隧道力学学组会议论文集,中国兰州, 1985:1- 15.
6 张前进,李德巧,宫亚峰,等. 基于响应面法的基坑有限元模型修正[J]. 现代隧道技术, 2022, 59(S2): 69-76.
Zhang Qian-jin, Li De-qiao, Gong Ya-feng, et al. Modification of finite element model of foundation pit based on response surface method[J]. Modern Tunnelling Technology, 2022, 59(S2): 69-76.
7 曲强,李昊波. 软土深基坑土体本构模型适用性及参数敏感性分析[J]. 铁道勘察, 2022, 48(3): 94-99, 106.
Qu Qiang, Li Hao-bo. Analysis of the applicability of constitutive model and parameter sensitivity for deep foundation pit with soft soil[J]. Railway Investigation and Surveying, 2022, 48(3): 94-99, 106.
8 马印平,刘永健,刘江. 基于响应面法的钢管混凝土组合桁梁桥多尺度有限元模型修正[J]. 中国公路学报, 2019, 32(11): 51-61.
Ma Yin-ping, Liu Yong-jian, Liu Jiang. Multi-scale finite element model updating of CFST composite truss bridge based on response surface method[J]. China Journal Highway and Transport, 2019, 32(11): 51-61.
9 冀伟,邵天彦. 波形腹板钢箱-混凝土箱梁桥的有限元模型修正[J]. 西南交通大学学报, 2021, 56(1): 1-11.
Ji Wei, Shao Tian-yan. Finite element model updating of box girder bridges with corrugated steel webs[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 1-11.
10 廖汉超,单汨源. 基于模糊聚类最大树算法的高层建筑基坑工程风险识别方法[J]. 吉林大学学报: 工学版, 2022, 52(12): 2892-2897.
Liao Han-chao, Shan Mi-yuan. Risk identification method of foundation pit engineering of high⁃rise buildings based on fuzzy clustering maximum tree algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(12): 2892-2897.
11 许世展,李杨,冯冠杰,等. 基于响应面法的桥梁节段参数模型修正[J]. 铁道科学与工程学报, 2022, 19(6): 1658-1665.
Xu Shi-zhan, Li Yang, Feng Guan-jie, et al. Model updating of bridge segment parameter based on response surface method[J]. Journal of Railway Science and Engineering, 2022, 19(6): 1658-1665.
12 张绍逸. 时变环境下桥梁集群结构损伤诊断方法[D]. 哈尔滨: 哈尔滨工业大学交通科学与工程学院, 2019.
Zhang Shao-yi. Damage diagnosis of bridges monitored within one cluster under time-varying environment[D]. Harbin: School of Transposition Science and Engineering, Harbin Institute of Technology, 2019.
13 申文永,张克利,姚爱敏. 某地铁车站深基坑监测数据分析[C]∥第十一届深基础工程发展论坛论文集,中国太原, 2022: 37-42.
14 古海东,罗春红. 疏排桩-土钉墙组合支护基坑土拱效应模型试验[J]. 吉林大学学报: 工学版, 2018, 48(6): 1712-1724.
Gu Hai-dong, Luo Chun-hong. Experiment of soil arching effect of pit supporting structure with scattered row piles and soil nail wall[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(6): 1712-1724.
15 黄明辉,李梦云,代煜. 基于Savitzky-Golay算法的某深基坑监测数据降噪处理[J]. 汕头大学学报: 自然科学版, 2022, 37(2): 50-60.
Huang Ming-hui, Li Meng-yun, Dai Yu. Based on the Savitzky-Golay noise reduction algorithm of a deep foundation pit monitoring data processing[J]. Journal of Shantou University (Natural Science), 2022, 37(2): 50-60.
16 钟龙凯. 深基坑监测技术与数据分析[D]. 南昌: 南昌大学建筑工程学院, 2021.
Zhong Long-kai. Monitoring technology and data analysis of deep foundation pit[D]. Nanchang: School of infrastructure Engineering, Nanchang University, 2012.
17 Feng T, Wang C, Zhang J, et al. An improved artificial bee colony-random forest (IABC-RF) model for predicting the tunnel deformation due to an adjacent foundation pit excavation[J]. Underground Space,2022, 7(4): 514-527.
18 张浩,张陈蓉,时振昊,等. 基于IGS小应变模型的基坑开挖对隧道影响数值模拟[J]. 岩土工程学报, 2021, 43(S2): 72-75.
Zhang Hao, Zhang Chen-rong, Shi Zhen-hao, et al. Numerical simulation of excavation effects on tunneling with IGS small strain model[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 72-75.
19 马险峰,刘畅,徐良义. 修正双屈服面模型在软土基坑开挖中的应用[J]. 岩石力学与工程学报, 2019, 38(): 3883-3893.
Ma Xian-feng, Liu Chang, Xu Liang-yi. Application of modified double-yield surface model in foundation excavation of soft soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(Sup.2): 3883-3893.
20 何维,孙宏磊,陶袁钦,等. 开挖引起的隧道位移动态多目标优化反演预测[J]. 上海交通大学学报, 2022, 56(12): 1688-1699.
He Wei, Sun Hong-lei, Tao Yuan-qin, et al. Dynamic multi-objective optimization inverse prediction of excavation-induced tunnel displacement[J]. Journal of Shanghai Jiao Tong University, 2022, 56(12): 1688-1699.
[1] Hua-min LIU,Shu-han YANG,Yi LI,Ce LIANG,Qi-gang Han. Thrust rod ball hinge bionic surface improvement and finite element analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2733-2740.
[2] Ce LIANG,Min LI,Yi LI,Ji-cai LIANG,Qi-gang HAN. Numerical simulation on friction characteristics of rubber bushing with bionic flexible surfaces [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2181-2186.
[3] Jian-xiao ZHENG,Wen-bo WANG,Jin-song LIU,Li-ming ZHOU,Yu LI. Moisture-electro-mechanical coupling smoothed finite element method based on asymptotic homogenization [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1876-1886.
[4] Hua-fei HE,Zhao-ping LI,Rui-an FU,Shao-lin MA,Ming-li HUANG. Experiment on seismic performance of prefabricated sidewall joints considering strata restraint effect [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1601-1611.
[5] Li-hua LI,Zi-jian LI,Heng-lin XIAO,Wen-zhe CAO,Xin-long ZHOU,Shao-ping HUANG. Experiment on cyclic shear of geosynthetic reinforced construction waste soil [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1612-1623.
[6] Zhen-yong DI,Yong ZHANG. Calculation method for bearing capacity of seismic joints of beam column rigid connections in multi story and high rise buildings [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1058-1064.
[7] Yi-fan LIU,Zhi-wei MIAO,Chen SHEN,Xiang-dong GENG. Evaluation of mechanical properties of non-uniform corroded rebars based on Monte Carlo method [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1007-1015.
[8] Bin FENG,Tao ZHANG,Tao LIANG,Ying ZHANG,Xing-long TANG,Guan-ping WANG. Design and experiment of silage baling and wrapping machine with electric driving [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 564-573.
[9] Zhi-jun YANG,Chi ZHANG,Guan-xin HUANG. Mechanical model of rigid⁃flexible coupling positioning stage based on floating coordinate method [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 385-393.
[10] Wei SUN,Jun YANG. Finite element modeling and vibration reduction analysis of cylindrical shell structures with equal⁃angle attachment of piezoelectric shunt patches [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 365-374.
[11] Xiao HAN,Xian-zhang LING,Shuang TIAN,Sheng-yi CONG. Analysis and control of mud spillover in high⁃speed railway ballast⁃track subgrade caused by grouting [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 506-515.
[12] Li-hua LI,Hao-ran KANG,Xin ZHANG,Heng-lin XIAO,Yi-ming LIU,Xin-long ZHOU. Dynamic characteristics of reinforced soil-rock mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2897-2907.
[13] Ying XU,Yue FAN,Qing-yuan WANG,Zhen-yu ZHANG. Experiment and numerical analysis on fracture toughness of polypropylene fiber reinforced concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2884-2896.
[14] Fang-cheng LIU,Jiang WANG,Meng-tao WU,Guo-bin BU,Jie HE. Stress⁃strain characteristics of geogrid reinforced rubber sand mixtures [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2542-2553.
[15] Shu-pei ZHANG,Ming-yue XIA,Wei ZHANG,Zhao CHEN,Yi-xiang CHEN. Impact dynamic modeling and simulation for ball joint with clearance considering nonlinear stiffness [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2227-2235.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .