Journal of Jilin University(Engineering and Technology Edition) ›› 2026, Vol. 56 ›› Issue (1): 64-75.doi: 10.13229/j.cnki.jdxbgxb.20240663

Previous Articles     Next Articles

Long-term aging prediction of proton exchange membrane fuel cell based on improved long short term memory networks

Peng-tang ZHA1(),Feng-xu QI1,Yu-ze YANG2,Jia LIU1,Feng-yang GAO1   

  1. 1.School of Automation and Electrical Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China
    2.CRRC Tangshan Co. ,Ltd. ,Tangshan 063035,China
  • Received:2025-06-14 Online:2026-01-01 Published:2026-02-03

Abstract:

Aiming at the long-term aging prediction problem of Proton exchange membrane fuel cell (PEMFC), this paper proposes a PEMFC output voltage prediction method of 2D-grid long short term memory networks(2D-G-LSTM) by denoising through locally weighted scatterplot smoothing (LOWESS). First, data reconstruction and smoothing are performed by LOWESS to obtain smoothed data after eliminating noise and spikes. Second, a 2D-G structure is used to optimize the LSTM to determine the optimal parameters, and a 2D-G-LSTM is constructed based on the optimal parameters to achieve long-term prediction of the PEMFC output voltage over the next several hundred hour intervals. Finally, the proposed method is tested and compared with five classical methods, namely, extended Kalman filter, long short term memory network, correlation vector machine, echo state network, and back-propagation neural network, under two sets of aging datasets representing static and dynamic operating conditions, respectively. The results show that the root mean square error and the mean absolute percentage error of the proposed method are reduced by 51.19%, 53.66% and 43.88% and 49.43%, respectively, compared with LSTM when the training duration of the static and dynamic condition datasets reaches 550 h and 700 h, respectively. Therefore, the proposed method predicts a smaller error and the long-term aging trend of PEMFC is closer to the real value, and it can improve the aging prediction accuracy of PEMFC to some extent.

Key words: proton exchange membrane fuel cell, long short term memory network, locally weighted scatterplot smoothing denoising, 2D-grid structure, aging prediction

CLC Number: 

  • TK91

Fig.1

LSTM unit execution flow"

Fig.2

2D-G-LSTM structure"

Fig.3

Long-term aging prediction process based on LOWESS-2D-G-LSTM"

Fig.4

1 kW fuel cell stack test bed"

Table 1

Physical parameters and control ranges of stack operation"

物理参数控制范围
冷却温度/℃20~80
冷却流量/(L·min-10~10
气体温度/℃20~80
气体相对湿度/%0~100
空气流量/(L·min-10~100
氢气流量/(L·min-10~30
气体压力/bar0~2
燃料电池电流/A0~300

Fig.5

PEMFC stack test principle"

Table 2

Characterization parameters collected during experiment"

特征参数物理意义
Time/h时间
U1~U5/V;Utot/V单电池1~5电压;电堆电压
I/A;J/(A·cm-2电流;电流密度
TinH2/℃;ToutH2/℃氢气进口温度;氢气出口温度
TinAIR/℃;ToutAIR/℃空气进口温度;空气出口温度
TinWAT/℃;ToutWAT/℃冷却水进口温度;冷却水出口温度
PinH2/102Pa;PoutH2/102Pa氢气进口压力;氢气出口压力
PinAir/102Pa;PoutAir/102Pa空气进口压力;空气出口压力

DinH2/(L·mn-1);

DoutH2/(L·mn-1

氢气进口流速;氢气出口流速

DinAir/(L·min-1);

DoutAir/(L·min-1

空气进气流速;空气出口流速
DWAT/(L·min-1冷却水流速
HrAIRFC/%空气湿度

Fig.6

Correlation analysis matrix diagram"

Fig.7

Aging data after preprocessing"

Table 3

Grid parameters optimization results"

网格类型参数数值
2D-G-LSTM输入层维数20
隐藏层神经元个数60
输出层维数5
批大小56
训练轮数54
学习率0.001
验证频率10

Fig.8

Prediction curves of the four algorithms in FC1 for different training duration"

Fig.9

Predictive evaluation metrics for four algorithms in FC1"

Fig.10

Prediction curves of the four algorithms in FC2 for different training duration"

Fig.11

Predictive evaluation metrics for four algorithms in FC2"

Table 4

Predictive evaluation metrics for three methods under different operating conditions"

工况预测方法fRMSEfMAPE

静态

(FC1)

BPNN250.016 80.003 8
ESN250.027 10.007 1
LOWESS-2D-G-LSTM0.008 20.001 9

动态

(FC2)

BPNN250.023 60.006 1
ESN250.037 90.017 8
LOWESS-2D-G-LSTM0.019 50.005 1
[1] 高锋阳, 强雅昕, 高智山, 等. 计及驾驶风格的氢燃料电池有轨电车自适应能量管理策略[J]. 铁道科学与工程学报, 2024, 21(4): 1379-1390.
Gao Feng-yang, Qiang Ya-xin, Gao Zhi-shan, et al. Counting and driving style hydrogen fuel cell trams adaptive energy management strategy[J]. Journal of Railway Science and Engineering, 2024, 21(4): 1379-1390.
[2] 李浩, 李浩, 杨扬, 等. 基于改进鲸鱼算法优化GRU的PEMFC老化预测[J]. 中国电机工程学报, 2024, 44(20): 8166-8178.
Li Hao, Li Hao, Yang Yang, et al. PEMFC aging prediction based on improved whale optimization algorithm optimized GRU[J]. Proceedings of the CSEE, 2024, 44(20): 8166-8178.
[3] 赵波, 张领先, 章雷其, 等. 基于TCN和AUKF联合迭代的PEMFC寿命融合预测方法[J]. 中国电机工程学报, 2025, 45(9): 3609-3624.
Zhao Bo, Zhang Ling-xian, Zhang Lei-qi, et al. PEMFC remaining useful life fusion method based on joint iteration of TCN and AUKF[J]. Proceedings of the CSEE, 2025, 45(9): 3609-3624.
[4] 苏雨临, 连冠, 张大骋. 等效电路模型法预测动态工况下微型直接甲醇燃料电池剩余使用寿命[J]. 上海交通大学学报, 2024, 58(10): 1575-1584.
Su Yu-lin, Lian Guan, Zhang Da-cheng. Equivalent circuit model-based prognostics for micro direct methanol fuel cell under dynamic operating conditions[J]. Journal of Shanghai Jiaotong University, 2024, 58(10): 1575-1584.
[5] 谢宏远, 刘逸, 候权, 等. 基于粒子滤波和遗传算法的氢燃料电池剩余使用寿命预测[J]. 东北电力大学学报, 2021, 41(1): 56-64.
Xie Hong-yuan, Liu Yi, Hou Quan, et al. Prediction of the remaining useful life of PEMFC based on particle filter and genetic algorithm[J]. Journal of Northeast Electric Power University, 2021, 41(1): 56-64.
[6] Bressel M, Hilairet M, Hissel D, et al. Extended kalman filter for prognostic of proton exchange membrane fuel cell[J]. Applied Energy, 2016, 164: 220-227.
[7] 胡捷, 苏建徽, 杜燕, 等. 基于最小二乘法的PEMFC电堆模型参数辨识[J]. 太阳能学报, 2021, 42(6):1-4.
Hu Jie, Su Jian-hui, Du Yan, et al. Parameter identification of PEMFC stack model based on least square method[J]. Acta Energiae Solaris Sinica, 2021, 42(6): 1-4.
[8] Chen K, Laghrouche S, Djerdir A. Fuel cell health prognosis using unscented kalman filter: postal fuel cell electric vehicles case study[J]. International Journal of Hydrogen Energy, 2019, 44(3): 1930-1939.
[9] Chen K, Laghrouche S, Djerdir A. Degradation prediction of proton exchange membrane fuel cell based on grey neural network model and particle swarm optimization[J]. Energy Conversion and Management, 2019, 195: 810-818.
[10] Chen K, Laghrouche S, Djerdir A. Proton exchange membrane fuel cell degradation and remaining useful life prediction based on artificial neural network[C]∥Renewable Energy Research and Applications. Paris: Universit Bourgogne Franche-Comt, 2018: 14-17.
[11] 潘诗媛, 华志广, 王光伟, 等. 基于级联回声状态网络的氢燃料电池剩余使用寿命预测[J]. 中国电机工程学报, 2025, 45(12): 4718-4728.
Pan Shi-yuan, Hua Zhi-guang, Wang Guang-wei, et al. Remaining useful life prediction of hydrogen fuel cell based on cascade echo state network[J]. Proceedings of the CSEE, 2025, 45(12): 4718-4728.
[12] 李鹏程. 基于循环神经网络氢燃料电池寿命预测技术[D]. 成都: 电子科技大学自动化工程学院, 2021.
Li Peng-cheng. The RUL prediction of hydrogen fuel cells based on recurrent neural network[D]. Chengdu: School of Automation Engineering, University of Electronic Science and Technology of China, 2021.
[13] Wang F K, Cheng X B, Hsiao K C. Stacked long short-term memory model for proton exchange membrane fuel cell systems degradation[J]. Journal of Power Sources, 2020, 448(6): No.227591.
[14] Zuo J, Lv H, Zhou D M, et al. Deep learning based prognostic framework towards proton exchange membrane fuel cell for automotive application[J]. Applied Energy, 2021, 281: No.115937
[15] 刘嘉蔚. 数据驱动的PEMFC发电系统故障诊断与寿命预测方法研究[D]. 成都: 西南交通大学电气工程学院, 2020.
Liu Jia-wei. Data-driven fault diagnosis and life prediction methods for PEMFC power generation system[D]. Chengdu: School of Electrical Engineering, Southwest Jiaotong University, 2020.
[16] 张雪霞, 高雨璇, 陈维荣. 基于数据驱动的质子交换膜燃料电池寿命预测[J]. 西南交通大学学报, 2020, 55(2): 417-427.
Zhang Xue-xia, Gao Yu-xuan, Chen Wei-rong. Data-driven based remaining useful life prediction for proton exchange membrane fuel cells[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 417-427.
[17] 吴航宇, 王玮, 朱文超, 等. 基于ARIMA-BiGRU双数据驱动的燃料电池性能退化预测方法[J]. 中国电机工程学报, 2025, 45(7): 2690-2699.
Wu Hang-yu, Wang Wei, Zhu Wen-chao, et al. A fuel cell performance degradation prediction method based on ARIMA-BiGRU dual data-driven approach[J]. Proceedings of the CSEE, 2025, 45(7): 2690-2699.
[18] Werbos P J. Backpropagation through time: what it does and how to do it[J]. Proc IEEE, 1990, 78(10): 1550-1560.
[19] 刘嘉蔚, 李奇, 陈维荣, 等. 基于核超限学习机和局部加权回归散点平滑法的PEMFC剩余使用寿命预测方法[J]. 中国电机工程学报, 2019, 39(24): 7272-7279, 7500.
Liu Jia-wei, Li Qi, Chen Wei-rong, et al. Remaining useful life prediction method of PEMFC based on kernel extreme learning machine and locally weighted scatterplot smoothing[J]. Proceedings of the CSEE, 2019, 39(24): 7272-7279, 7500.
[20] Cleveland W S. LOWESS: a program for smoothing scatterplots by robust locally weighted regression[J]. American Statistician, 1981, 35(1): 54-54.
[21] 孙想, 吴保国, 吴华瑞, 等. 基于前置平滑的苗圃监测数据多元回归拟合方法[J]. 东北林业大学学报,2015, 43(12): 45-50.
Sun Xiang, Wu Bao-guo, Wu Hua-rui, et al. Multiple regression fitting method of nursery monitoring data by pre-smoothing disposal[J]. Journal of Northeast Forestry University, 2015, 43(12): 45-50.
[22] 赵波, 张领先, 章雷其, 等. PEMFC剩余使用寿命直接预测的混合方法[J]. 中国电机工程学报, 2024, 44(21): 8554-8568.
Zhao Bo, Zhang Ling-xian, Zhang Lei-qi, et al. A hybrid method for direct prediction of PEMFC remaining useful life[J]. Proceedings of the CSEE, 2024, 44(21): 8554-8568.
[23] FCLAB Research. IEEE PHM 2014 data challenge.2014[DB/OL].[2024-10-15]..
[24] 汪建锋, 王荣杰, 林安辉,等. 质子交换膜燃料电池退化预测方法研究[J]. 电工技术学报, 2024, 39(11): 3367-3378.
Wang Jian-feng, Wang Rong-jie, Lin An-hui, et al. Research on degradation prediction method of proton exchange membrane fuel cell[J]. Transactions of China Electrotechnical Society, 2024, 39(11): 3367-3378.
[25] Ma R, Xie R Y, Xu L C, et al. A hybrid prognostic method for PEMFC with aging parameter prediction[J]. IEEE Transactions on Transportation Electrification, 2021, 7(4): 2318-2331.
[1] Ya-hui ZHANG,Gan-xin LI,Yan-ling LIU,Yun-feng HU. Cathode intake system control method of proton exchange membrane fuel cells based on high-order fully actuated system [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(8): 2791-2801.
[2] Hai-lan DING,Kun-yu QI. Automatic extraction of Chinese text topic sentences based on TextRank algorithm and similarity [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 1001-1008.
[3] Hui-chao ZHAO,Hua-yang LIU,Hong-hui ZHAO,Yu-peng WANG,Ling-hai HAN. Design and simulation study on air supply system pressure controller for fuel cell engine in multi-working conditions [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 503-511.
[4] Qin-wen YANG,Xu WANG,Gang XIAO. Non⁃uniform design of catalyst distribution for fuel cell membrane electrode assembly [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(12): 3814-3821.
[5] Guang-di HU,Hao JING,Cheng LI,Biao FENG,Xiao-dong LIU. Multi⁃objective sliding mode control based on high⁃order fuel cell model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2182-2191.
[6] Cheng LI,Hao JING,Guang-di HU,Xiao-dong LIU,Biao FENG. High⁃order sliding mode observer for proton exchange membrane fuel cell system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2203-2212.
[7] Heng ZHANG,Zhi-gang ZHAN,Ben CHEN,Pang-chieh SUI,Mu PAN. Anisotropic transport properties of gas diffusion layer based on pore⁃scale model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2055-2062.
[8] Zhen-ning LIU,Ke JIANG,Tao-tao ZHAO,Wen-xuan FAN,Guo-long LU. Development and experimental of high⁃power proton exchange membrane fuel cell test system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2025-2033.
[9] Yao-wang PEI,Feng-xiang CHEN,Zhe HU,Shuang ZHAI,Feng-lai PEI,Wei-dong ZHANG,Jie-ran JIAO. Temperature control of proton exchange membrane fuel cell thermal management system based on adaptive LQR control [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2014-2024.
[10] Yang XIAO,Jie WANG,Meng-jun LIU,Fa-qing YANG,Tian-yao ZHANG,Wei LAN. Improved mechanical model of gas diffusion layer in proton exchange membrane fuel cell [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2147-2155.
[11] Xun-cheng CHI,Zhong-jun HOU,Wei WEI,Zeng-gang XIA,Lin-lin ZHUANG,Rong GUO. Review of model⁃based anode gas concentration estimation techniques of proton exchange membrane fuel cell system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1957-1970.
[12] Jin-wu GAO,Yi-lin WANG,Hua-yang LIU,Yi-da WANG. Decoupling control for proton exchange membrane fuel cell air supply system based on sliding mode observer [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2156-2167.
[13] Zi-rong YANG,Yan LI,Xue-feng JI,Fang LIU,Dong HAO. Sensitivity analysis of operating parameters for proton exchange membrane fuel cells [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1971-1981.
[14] Feng-xiang CHEN,Jun-yu ZHANG,Feng-lai PEI,Ming-tao HOU,Qi-peng LI,Pei-qing LI,Yang-yang WANG,Wei-dong ZHANG. Modeling and selection scheme of proton exchange membrane fuel cell hydrogen supply system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1982-1995.
[15] Pei ZHANG,Zhi-wei WANG,Chang-qing DU,Fu-wu YAN,Chi-hua LU. Oxygen excess ratio control method of proton exchange membrane fuel cell air system for vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1996-2003.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!