Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (9): 2182-2191.doi: 10.13229/j.cnki.jdxbgxb20220281

Previous Articles    

Multi⁃objective sliding mode control based on high⁃order fuel cell model

Guang-di HU1(),Hao JING1,Cheng LI1,2,Biao FENG1,Xiao-dong LIU1   

  1. 1.School of Mechanical Engineering,Southwest Jiaotong University,Chengdu 610036,China
    2.China Automotive Technology & Research Center Co. ,Ltd. ,Tianjin 300300,China
  • Received:2022-03-21 Online:2022-09-01 Published:2022-09-13

Abstract:

To improve the efficiency and lifetime of the proton exchange membrane fuel cell(PEMFC), multiple states of the fuel cell were accurately controlled. Firstly, a 12-order fuel cell model is established in Simulink, and the modeling parameters are fitted using experimental data, and the maximum error of the simulation model output voltage is 3.68%. Secondly, a 3-input and 3-output sliding mode controller is designed based on the established model to control the stack oxygen excess ratio, cathode and anode gas pressure difference and temperature through the compressor voltage, anode inlet gas flow and cooling water flow, respectively. The simulation results show that compared with the PI controller, the designed sliding-mode controller shortens the transition time of oxygen excess ratio control by 3 seconds when the load current changes abruptly, reduces the fluctuation of cathode and anode pressure difference from 40 Pa to about 2 Pa, and controls the temperature fluctuation within 0.05 K.

Key words: vehicle engineering, proton exchange membrane fuel cell(PEMFC), system efficiency, modeling and simulation, multi-input multi-output, sliding mode controller

CLC Number: 

  • TM911.4

Table 1

Basic parameters of the stack"

参数取值
燃料电池的节数N316
额定功率Pmax/kW70
燃料电池的活化面积A/cm2260
燃料电池阳极容积Van/m30.002 35
燃料电池阴极容积Vca/m30.004 5
燃料电池供应歧管容积Vsm/m30.005

Fig.1

PEMFC system structure diagram"

Table 2

Air compressor and stack voltage parameter values"

参数取值
理论电动势V0/V1.229
电阻R/Ω3.971 5
电荷传输系数α0.155
法拉第常数F/(C·mol-196 485
表观电池活化面积Aapp/cm2292.87
阻抗常数R0/Ω·cm-20.077 4
阻抗常数R1/Ω·cm-20.008 36
极化曲线系数nc/(cm2·A-16.679 2
极化曲线系数m/10-6 V3.478
极化曲线系数b/V0.013 521
极化曲线系数a/105 Pa0.279 56
交换电流密度i0/(A·cm-21.49
MAP图拟合参数P00288.2
MAP图拟合参数P01-0.000 463 1
MAP图拟合参数P10-336.9
MAP图拟合参数P20-74.51
MAP图拟合参数P02/10-8-4.166

MAP图拟合参数P11

环境压力Patm/Pa

环境温度Tatm/K

0.006 191

101 325

298.15

Fig.2

Air compressor map fitting diagram"

Fig.3

Simulation model verification diagram"

Fig.4

Fitting the optimal ORE curve at different loads"

Fig.5

MIMO SMC control scheme"

Table 3

MIMO-SMC and PI controllertuning parameters"

控制器调节参数值
本文k1=0.01k2=0.1k3=0.01
ε1=6ε2=20ε3=1
PIkp1=1×10-5kp2=5000kp3=1.4
P1=1×10-5P2=6500P3=1.5

Fig.6

Stack load current"

Fig.7

Comparison of performance between MIMO-SMC and PI"

Table 4

Comparative error analysiss"

误差类型控制器过氧比压力差温度
IAE本文4.08224 4000.332 3
PI5.90943 5500.440 9
ITAE本文331.016 64066.38
PI474.466 65087.93
ISE本文1.3581.155×1090.003 2
PI2.5421.333×1090.004 8
ITSE本文43.641.862×1080.735
PI64.504.215×1081.065
1 李佳琪,徐潇源,严正.大规模新能源汽车接入背景下的电氢能源与交通系统耦合研究综述[J].上海交通大学学报,2022,56(3):253-266.
Li Jia-qi, Xu Xiao-yuan, Yan Zheng. A review of research on coupling electric-hydrogen energy and transportation system in the context of large-scale new energy vehicle access[J]. Journal of Shanghai Jiaotong University,2022,56(3):253-266.
2 孙闫, 夏长高, 尹必峰, 等. 燃料电池电动汽车的能量管理[J/OL]. [2022-02-20].
3 高助威,李小高,刘钟馨,等.氢燃料电池汽车的研究现状及发展趋势[J].材料导报,2022,36(14):74-81.
Gao Zhu-wei, Li Xiao-gao, Liu Zhong-xin, et al. Research status and development trend of hydrogen fuel cell vehicles[J]. Materials Guide,2022,36(14):74-81.
4 Murschenhofer D, Kuzdas D, Braun S, et al. A real-time capable quasi-2D proton exchange membrane fuel cell model[J]. Energy Conversion and Management, 2018, 162: 159-175.
5 Pukrushpan J T, Peng H, Stefanopoulou A G. Simulation and analysis of transient fuel cell system performance based on a dynamic reactant flow model[C]∥ASME International Mechanical Engineering Congress and Exposition, New Orleans, Louisiana, USA, 2002: 637-648.
6 Pukrushpan J T, Stefanopoulou A G, Peng H. Control of fuel cell breathing[J]. IEEE Control Systems Magazine, 2004, 24(2): 30-46.
7 Pukrushpan J T, Peng H, Stefanopoulou A G. Control-oriented modeling and analysis for automotive fuel cell systems[J]. Journal of Dynamic Systems Measurement and Control, Control, 2004, 126(1): 14-25.
8 Grujicic M, Chittajallu K M, Law E H, et al. Model-based control strategies in the dynamic interaction of air supply and fuel cell[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2004, 218(7): 487-499.
9 Kunusch C, Puleston P, Mayosky M. Sliding-Mode Control of PEM Fuel Cells[M]. London: Springer Science & Business Media, 2012.
10 Sankar K, Jana A K. Nonlinear multivariable sliding mode control of a reversible PEM fuel cell integrated system[J]. Energy Conversion and Management, 2018, 171: 541-565.
11 Wang Y, Li H, Feng H, et al. Simulation study on the PEMFC oxygen starvation based on the coupling algorithm of model predictive control and PID[J]. Energy Conversion and Management, 2021, 249: No. 114851.
12 李奇, 冯嘉, 尹良震, 等. 基于多阶滑模观测器的PEMFC发电系统输出净功率优化控制方法[J]. 电网技术, 2022, 46(3): 1005-1015.
Li Qi, Feng Jia, Yin Liang-Zhen, et al. A multi-order sliding mode observer-based optimal control method for net power output of PEMFC power generation system[J]. Power Grid Technology, 2022, 46(3): 1005-1015.
13 洪凌. 车用燃料电池发电系统氢气回路控制[D]. 杭州:浙江大学控制科学与工程学院, 2017.
Hong Ling. Hydrogen circuit control for automotive fuel cell power generation system[D]. Hangzhou: School of Control Science and Engineering, Zhejiang University, 2017.
14 Zhang Q, Tong Z, Tong S, et al. Modeling and dynamic performance research on proton exchange membrane fuel cell system with hydrogen cycle and dead-ended anode[J]. Energy, 2021, 218(C): No. 119476.
15 Matraji I, Laghrouche S, Wack M. Pressure control in a PEM fuel cell via second order sliding mode[J]. International Journal of Hydrogen Energy, 2012, 37(21): 16104-16116.
16 Quan S, Wang Y X, Xiao X, et al. Feedback linearization-based MIMO model predictive control with defined pseudo-reference for hydrogen regulation of automotive fuel cells[J]. Applied Energy, 2021, 293: No. 116919.
17 申小玲, 刘朝晖, 郭昌海. 温控系统对质子交换膜燃料电池性能影响[J]. 电源技术, 2017, 41(1): 54-56.
Shen Xiao-ling, Liu Zhao-hui, Guo Chang-hai. Effect of temperature control system on the performance of proton exchange membrane fuel cells[J]. Power Technology, 2017, 41(1): 54-56.
18 程珍, 陈科, 罗超. 基于模糊预测控制的燃料电池温度控制系统的研究[J]. 仪表技术, 2012, 40(8): 1-4, 8.
Cheng Zhen, Chen Ke, Luo Chao. Study of fuel cell temperature control system based on fuzzy predictive control[J]. Instrumentation Technology, 2012, 40(8): 1-4, 8.
19 Cheng S, Fang C, Xu L, et al. Model-based temperature regulation of a PEM fuel cell system on a city bus[J]. International Journal of Hydrogen Energy, 2015, 40(39): 13566-13575.
20 梁鹏.车用水冷燃料电池用户手册[Z].
21 Slotine J J E, Li W. Applied Nonlinear Control[M]. Englewood Cliffs, NJ: Prentice Hall, 1991.
22 Lu X Y, Spurgeon S K. Output feedback stabilization of MIMO non-linear systems via dynamic sliding mode[J]. International Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal, 1999, 9(5): 275-305.
23 邓惠文, 李奇, 陈维荣. 适用于PEMFC系统过氧化估计的HOSM观测器研究[J]. 中国电机工程学报, 2017, 37(17): 5058-5068, 5225.
Deng Hui-wen, Li Qi, Chen Wei-rong. Research on HOSM observer applicable to peroxide estimation of PEMFC system[J]. Chinese Journal of Electrical Engineering, 2017, 37(17): 5058-5068, 5225.
[1] Ke-yong WANG,Da-tong BAO,Su ZHOU. Data-driven online adaptive diagnosis algorithm towards vehicle fuel cell fault diagnosis [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2107-2118.
[2] Qi-ming CAO,Hai-tao MIN,Wei-yi SUN,Yuan-bin YU,Jun-yu JIANG. Hydrothermal characteristics of proton exchange membrane fuel cell start⁃up at low temperature [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2139-2146.
[3] Hai-lin KUI,Ze-zhao WANG,Jia-zhen ZHANG,Yang LIU. Transmission ratio and energy management strategy of fuel cell vehicle based on AVL⁃Cruise [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2119-2129.
[4] Yan LIU,Tian-wei DING,Yu-peng WANG,Jing DU,Hong-hui ZHAO. Thermal management strategy of fuel cell engine based on adaptive control strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2168-2174.
[5] Pei ZHANG,Zhi-wei WANG,Chang-qing DU,Fu-wu YAN,Chi-hua LU. Oxygen excess ratio control method of proton exchange membrane fuel cell air system for vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1996-2003.
[6] Feng-xiang CHEN,Jun-yu ZHANG,Feng-lai PEI,Ming-tao HOU,Qi-peng LI,Pei-qing LI,Yang-yang WANG,Wei-dong ZHANG. Modeling and selection scheme of proton exchange membrane fuel cell hydrogen supply system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1982-1995.
[7] Xun-cheng CHI,Zhong-jun HOU,Wei WEI,Zeng-gang XIA,Lin-lin ZHUANG,Rong GUO. Review of model⁃based anode gas concentration estimation techniques of proton exchange membrane fuel cell system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1957-1970.
[8] Yao-wang PEI,Feng-xiang CHEN,Zhe HU,Shuang ZHAI,Feng-lai PEI,Wei-dong ZHANG,Jie-ran JIAO. Temperature control of proton exchange membrane fuel cell thermal management system based on adaptive LQR control [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2014-2024.
[9] Heng ZHANG,Zhi-gang ZHAN,Ben CHEN,Pang-chieh SUI,Mu PAN. Anisotropic transport properties of gas diffusion layer based on pore⁃scale model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2055-2062.
[10] Feng-xiang CHEN,Qi WU,Yuan-song LI,Tian-de MO,Yu LI,Li-ping HUANG,Jian-hong SU,Wei-dong ZHANG. Matching,simulation and optimization for 2.5 ton fuel cell/battery hybrid forklift [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2044-2054.
[11] Xiao-hua WU,Zhong-wei YU,Zhang-ling ZHU,Xin-mei GAO. Fuzzy energy management strategy of fuel cell buses [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2077-2084.
[12] Qing GAO,Hao-dong WANG,Yu-bin LIU,Shi JIN,Yu CHEN. Experimental analysis on spray mode of power battery emergency cooling [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1733-1740.
[13] Kui-yang WANG,Ren HE. Recognition method of braking intention based on support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1770-1776.
[14] Jun-cheng WANG,Lin-feng LYU,Jian-min LI,Jie-yu REN. Optimal sliding mode ABS control for electro⁃hydraulic composite braking of distributed driven electric vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1751-1758.
[15] Han-wu LIU,Yu-long LEI,Xiao-feng YIN,Yao FU,Xing-zhong LI. Multi⁃point control strategy optimization for auxiliary power unit of range⁃extended electric vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1741-1750.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!