吉林大学学报(医学版) ›› 2021, Vol. 47 ›› Issue (4): 1056-1063.doi: 10.13481/j.1671-587X.20210434
收稿日期:
2020-11-08
出版日期:
2021-07-28
发布日期:
2021-07-22
通讯作者:
李薇
E-mail:jdyylw@163.com
作者简介:
张 娜(1995-),女,山西省长治市人,在读硕士研究生,主要从事恶性肿瘤临床方面的研究。
基金资助:
Received:
2020-11-08
Online:
2021-07-28
Published:
2021-07-22
摘要:
免疫治疗是肿瘤治疗的重要方法之一,通过阻断特定的信号传导通路,增强免疫系统对肿瘤抗原的反应能力进而识别和破坏肿瘤细胞,用于多种恶性肿瘤的治疗。促血管生成因子和抗血管生成因子失衡可促进肿瘤异常血管的形成,是恶性肿瘤的常见特征,可产生低氧、酸性和间质压升高等微环境改变,使促进肿瘤免疫的细胞(如树突状细胞和淋巴细胞等)相对缺乏,抑制肿瘤免疫的细胞(如调节性T细胞、髓源性抑制细胞和肿瘤相关巨噬细胞等)增多,从而降低免疫治疗疗效。对恶性肿瘤患者行抗血管生成治疗不但可促进异常血管正常化和重塑肿瘤微环境,还可增加免疫效应细胞对肿瘤的浸润,提高免疫治疗的有效性。二者联合应用可起到协同增效作用,在肺癌、肝癌、肾癌和乳腺癌等多种肿瘤患者治疗中均观察到明显获益,且总体安全性可控。现就血管内皮生长因子(VEGF)与免疫细胞之间的相互作用、血管异常对肿瘤免疫的影响和抗血管生成联合免疫治疗的临床应用进行简要综述。
中图分类号:
张娜,刘相良,徐志强,马责竣,徐鹤鸣,李薇. 肿瘤抗血管生成及其与免疫治疗关系的研究进展Research progress in relationship between tumor anti-angiogenesis and immunotherapy[J]. 吉林大学学报(医学版), 2021, 47(4): 1056-1063.
1 | WILKINSON R W, LEISHMAN A J. Further advances in cancer immunotherapy: going beyond checkpoint blockade[J]. Front Immunol, 2018, 9: 1082. |
2 | MANEGOLD C, DINGEMANS A C, GRAY J E, et al. The potential of combined immunotherapy and antiangiogenesis for the synergistic treatment of advanced NSCLC[J]. J Thorac Oncol, 2017, 12(2): 194-207. |
3 | FUKUMURA D, KLOEPPER J, AMOOZGAR Z, et al. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges[J]. Nat Rev Clin Oncol, 2018, 15(5): 325-340. |
4 | HUANG Y H, KIM B Y S, CHAN C K, et al. Improving immune-vascular crosstalk for cancer immunotherapy[J]. Nat Rev Immunol, 2018, 18(3): 195-203. |
5 | SIA D, ALSINET C, NEWELL P, et al. VEGF signaling in cancer treatment[J]. Curr Pharm Des, 2014, 20(17): 2834-2842. |
6 | FERRARA N, ADAMIS A P. Ten years of anti-vascular endothelial growth factor therapy[J]. Nat Rev Drug Discov, 2016, 15(6): 385-403. |
7 | GABRILOVICH D I, OSTRAND-ROSENBERG S, BRONTE V. Coordinated regulation of myeloid cells by tumours[J]. Nat Rev Immunol, 2012, 12(4): 253-268. |
8 | MEIROW Y, KANTERMAN J, BANIYASH M. Paving the road to tumor development and spreading: myeloid-derived suppressor cells are ruling the fate[J]. Front Immunol, 2015, 6: 523. |
9 | NAKAMURA I, SHIBATA M, GONDA K, et al. Serum levels of vascular endothelial growth factor are increased and correlate with malnutrition, immunosuppression involving MDSCs and systemic inflammation in patients with cancer of the digestive system[J]. Oncol Lett, 2013, 5(5): 1682-1686. |
10 | KARAKHANOVA S, LINK J, HEINRICH M, et al. Characterization of myeloid leukocytes and soluble mediators in pancreatic cancer: importance of myeloid-derived suppressor cells[J]. Oncoimmunology, 2015, 4(4): e998519. |
11 | KUSMARTSEV S, ERUSLANOV E, KÜBLER H, et al. Oxidative stress regulates expression of VEGFR1 in myeloid cells: link to tumor-induced immune suppression in renal cell carcinoma[J]. J Immunol, 2008, 181(1): 346-353. |
12 | FENG P H, CHEN K Y, HUANG Y C, et al. Bevacizumab reduces S100A9-positive MDSCs linked to intracranial control in patients with EGFR-mutant lung adenocarcinoma[J]. J Thorac Oncol, 2018, 13(7): 958-967. |
13 | PARKER K H, BEURY D W, OSTRAND-ROSENBERG S. Myeloid-derived suppressor cells: critical cells driving immune suppression in the tumor microenvironment[J]. Adv Cancer Res, 2015, 128: 95-139. |
14 | YANG L, DEBUSK L M, FUKUDA K, et al. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis[J]. Cancer Cell, 2004, 6(4): 409-421. |
15 | YANG L, HUANG J H, REN X B, et al. Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis[J]. Cancer Cell, 2008, 13(1): 23-35. |
16 | TAMURA R, TANAKA T, YAMAMOTO Y, et al. Dual role of macrophage in tumor immunity[J]. Immunotherapy, 2018, 10(10): 899-909. |
17 | SZEBENI G J, VIZLER C, KITAJKA K, et al. Inflammation and cancer: extra- and intracellular determinants of tumor-associated macrophages as tumor promoters[J]. Mediators Inflamm, 2017, 2017: 9294018. |
18 | HUANG Y H, YUAN J P, RIGHI E, et al. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy[J]. Proc Natl Acad Sci U S A, 2012, 109(43): 17561-17566. |
19 | CHUDNOVSKIY A, PASQUAL G, VICTORA G D. Studying interactions between dendritic cells and T cells in vivo [J]. Curr Opin Immunol, 2019, 58: 24-30. |
20 | LIN W, LIU T T, WANG B B, et al. The role of ocular dendritic cells in uveitis[J]. Immunol Lett, 2019, 209: 4-10. |
21 | GUILLIAMS M, GINHOUX F, JAKUBZICK C, et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny[J]. Nat Rev Immunol, 2014, 14(8): 571-578. |
22 | HU Z Q, XUE H, LONG J H, et al. Biophysical properties and motility of human mature dendritic cells deteriorated by vascular endothelial growth factor through cytoskeleton remodeling[J]. Int J Mol Sci, 2016, 17(11): E1756. |
23 | SAITO H, TSUJITANI S, IKEGUCHI M, et al. Relationship between the expression of vascular endothelial growth factor and the density of dendritic cells in gastric adenocarcinoma tissue[J]. Br J Cancer, 1998, 78(12): 1573-1577. |
24 | ZHANG W, SHOU W D, XU Y J, et al. Low-frequency ultrasound-induced VEGF suppression and synergy with dendritic cell-mediated anti-tumor immunity in murine prostate cancer cells in vitro [J]. Sci Rep, 2017, 7(1): 5778. |
25 | OYAMA T, RAN S, ISHIDA T, et al. Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells[J]. J Immunol, 1998, 160(3): 1224-1232. |
26 | BAI W K, ZHANG W, HU B. Vascular endothelial growth factor suppresses dendritic cells function of human prostate cancer[J]. Onco Targets Ther, 2018, 11: 1267-1274. |
27 | MIMURA K, KONO K, TAKAHASHI A, et al. Vascular endothelial growth factor inhibits the function of human mature dendritic cells mediated by VEGF receptor-2[J]. Cancer Immunol Immunother, 2007, 56(6): 761-770. |
28 | DIKOV M M, OHM J E, RAY N, et al. Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation[J]. J Immunol, 2005, 174(1): 215-222. |
29 | FRIDMAN W H, PAGÈS F, SAUTÈS-FRIDMAN C, et al. The immune contexture in human tumours: impact on clinical outcome[J]. Nat Rev Cancer, 2012, 12(4): 298-306. |
30 | MULLIGAN J K, ROSENZWEIG S A, YOUNG M R. Tumor secretion of VEGF induces endothelial cells to suppress T cell functions through the production of PGE2[J]. J Immunother, 2010, 33(2): 126-135. |
31 | ZIOGAS A C, GAVALAS N G, TSIATAS M, et al. VEGF directly suppresses activation of T cells from ovarian cancer patients and healthy individuals via VEGF receptor Type 2[J]. Int J Cancer, 2012, 130(4): 857-864. |
32 | MOTZ G T, SANTORO S P, WANG L P, et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors[J]. Nat Med, 2014, 20(6): 607-615. |
33 | SHRIMALI R K, YU Z Y, THEORET M R, et al. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer[J]. Cancer Res, 2010, 70(15): 6171-6180. |
34 | JAIN R K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy[J]. Science, 2005, 307(5706): 58-62. |
35 | BUI T M, WIESOLEK H L, SUMAGIN R. ICAM-1: a master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis[J]. J Leukoc Biol, 2020, 108(3): 787-799. |
36 | FACCIABENE A, PENG X H, HAGEMANN I S, et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells[J]. Nature, 2011, 475(7355): 226-230. |
37 | MEI B, CHEN J J, YANG N, et al. The regulatory mechanism and biological significance of the Snail-miR590-VEGFR-NRP1 axis in the angiogenesis, growth and metastasis of gastric cancer[J]. Cell Death Dis, 2020, 11(4): 241. |
38 | PALAZÓN A, ARAGONÉS J, MORALES-KASTRESANA A, et al. Molecular pathways: hypoxia response in immune cells fighting or promoting cancer[J]. Clin Cancer Res, 2012, 18(5): 1207-1213. |
39 | MISSIAEN R, MAZZONE M, BERGERS G. The reciprocal function and regulation of tumor vessels and immune cells offers new therapeutic opportunities in cancer[J]. Semin Cancer Biol, 2018, 52(Pt 2):107-116. |
40 | SCHMITTNAEGEL M, RIGAMONTI N, KADIOGLU E, et al. Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade[J]. Sci Transl Med, 2017, 9(385): eaak9670. |
41 | HUBER V, CAMISASCHI C, BERZI A, et al. Cancer acidity: an ultimate frontier of tumor immune escape and a novel target of immunomodulation[J]. Semin Cancer Biol, 2017, 43: 74-89. |
42 | PILON-THOMAS S, KODUMUDI K N, EL-KENAWI A E, et al. Neutralization of tumor acidity improves antitumor responses to immunotherapy[J]. Cancer Res, 2016, 76(6): 1381-1390. |
43 | LI X, WENES M, ROMERO P, et al. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy[J]. Nat Rev Clin Oncol, 2019, 16(7): 425-441. |
44 | SOCINSKI M A, JOTTE R M, CAPPUZZO F, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC[J]. N Engl J Med, 2018, 378(24): 2288-2301. |
45 | RECK M, MOK T S K, NISHIO M, et al. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150):key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial[J]. Lancet Respir Med, 2019, 7(5): 387-401. |
46 | WEST H, MCCLEOD M, HUSSEIN M, et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130):a multicentre, randomised, open-label, phase 3 trial[J]. Lancet Oncol, 2019, 20(7): 924-937. |
47 | LEE M S, RYOO B Y, HSU C H, et al. Atezolizumab with or without bevacizumab in unresectable hepatocellular carcinoma (GO30140): an open-label, multicentre, phase 1b study[J]. Lancet Oncol, 2020, 21(6): 808-820. |
48 | KUDO M. A new era in systemic therapy for hepatocellular carcinoma: atezolizumab plus bevacizumab combination therapy[J]. Liver Cancer, 2020, 9(2): 119-137. |
49 | FINN R S, QIN S K, IKEDA M, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma[J]. N Engl J Med, 2020, 382(20): 1894-1905. |
50 | 胡 捷,周 俭.阿替利珠单抗联合贝伐珠单抗使肝癌治疗燃起希望[J].肝脏,2020,25(9):903-904. |
51 | 魏建莹,孙 巍,刘晓民,等.肝细胞癌的靶向及免疫治疗进展[J].临床肝胆病杂志, 2020,36(10): 2320-2324. |
52 | RINI B I, POWLES T, ATKINS M B, et al. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3, randomised controlled trial[J]. Lancet, 2019, 393(10189): 2404-2415. |
53 | RINI B I, PLIMACK E R, STUS V, et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma[J]. N Engl J Med, 2019, 380(12): 1116-1127. |
54 | MOTZER R J, PENKOV K, HAANEN J, et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma[J]. N Engl J Med, 2019, 380(12): 1103-1115. |
55 | LIU J Q, LIU Q, LI Y, et al. Efficacy and safety of camrelizumab combined with apatinib in advanced triple-negative breast cancer: an open-label phase Ⅱ trial[J]. J Immunother Cancer, 2020, 8(1): e000696. |
56 | DIRIX L Y, TAKACS I, JERUSALEM G, et al. Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase 1b JAVELIN solid tumor study[J]. Breast Cancer Res Treat, 2018, 167(3): 671-686. |
57 | NANDA, CHOW L Q, DEES E C, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ⅰb KEYNOTE-012 study[J]. J Clin Oncol, 2016, 34(21): 2460-2467. |
58 | EMENS L A, CRUZ C, EDER J P, et al. Long-term clinical outcomes and biomarker analyses of atezolizumab therapy for patients with metastatic triple-negative breast cancer: a phase 1 study[J]. JAMA Oncol, 2019, 5(1): 74-82. |
59 | HU X C, CAO J, HU W W, et al. Multicenter phase Ⅱ study of apatinib in non-triple-negative metastatic breast cancer[J]. BMC Cancer, 2014, 14: 820. |
60 | 杜雯雯,黄建安.基于程序性死亡受体-1及其配体为靶点的肺癌免疫治疗新进展[J].中国实用内科杂志, 2019,39(5): 403-406. |
[1] | 何程远,杨红宇,谭钰晶,苏杭,李泓澍,历春. IL-17A在非小细胞肺癌组织中的表达及其通过NF-κB信号通路对VEGF表达的调控作用[J]. 吉林大学学报(医学版), 2022, 48(4): 1003-1009. |
[2] | 田悦,陈慧珊,张佩佩,申玉芹. 血管内皮生长因子在牙周组织再生中作用的研究进展Research progress in effect of vascular endothelial growth factor in periodontal tissue regeneration[J]. 吉林大学学报(医学版), 2022, 48(2): 546-552. |
[3] | 张新,巨朝娟,金鑫,熊朝晖,赵燕. 外源性神经生长因子对形觉剥夺性近视豚鼠巩膜组织的保护作用及其机制[J]. 吉林大学学报(医学版), 2021, 47(6): 1455-1461. |
[4] | 唐元瑜,刘海琴,马华根. 原代SD大鼠主动脉内皮细胞培养方法的建立及其鉴定[J]. 吉林大学学报(医学版), 2021, 47(4): 1038-1042. |
[5] | 王博,杨焱,费瑞,景年财,李兆东,卢义,肖宏宇,张越. 疏肝化癥方对小鼠皮下移植性三阴性乳腺癌生长的抑制作用及其机制[J]. 吉林大学学报(医学版), 2021, 47(2): 299-306. |
[6] | 唐浩轩,孟楠峰,杜美玲,王伟,何涛. 新型VEGF单克隆抗体与全反式维甲酸联合应用对乳腺癌MCF-7细胞增殖的抑制作用[J]. 吉林大学学报(医学版), 2021, 47(2): 344-351. |
[7] | 卜一, 张硕, 钱旭东, 王红梅, 窦志杰. 脑梗死模型大鼠缺血脑组织中胰岛素样生长因子结合蛋白3表达水平及其与血管新生的关系[J]. 吉林大学学报(医学版), 2020, 46(04): 759-764. |
[8] | 王丹, 廖丹, 李红, 熊立秋, 武莹, 董营, 盖晓东. 浆细胞样树突状细胞和Foxp3+调节性T细胞在结直肠癌组织中的表达及其意义[J]. 吉林大学学报(医学版), 2020, 46(04): 834-838. |
[9] | 冯磊, 张韩特, 李响, 孟繁平, 李妍. IL-4协同雌二醇对小鼠乳腺癌细胞生长的促进作用及其机制[J]. 吉林大学学报(医学版), 2020, 46(03): 536-542. |
[10] | 刘静乔, 郑燕, 王玉静, 孟亚丽, 徐淑稳, 张华林. 阿司匹林联合盆底平滑肌电刺激对宫腔粘连分离术后患者子宫内膜MVD和VEGF表达的影响及其临床意义[J]. 吉林大学学报(医学版), 2019, 45(06): 1408-1414. |
[11] | 刘恒, 孙凡, 徐倩倩, 高燕军, 马征, 窦志杰. 黄芩苷对脑小血管病模型大鼠认知功能及脑内血管内皮生长因子和内皮抑素表达水平的影响[J]. 吉林大学学报(医学版), 2019, 45(05): 1080-1085. |
[12] | 庞宇轩, 杨柳, 张志鹰, 李江. 三七总皂苷通过上调VEGF表达对大鼠拔牙创愈合的促进作用[J]. 吉林大学学报(医学版), 2019, 45(04): 796-800. |
[13] | 周丽程, 刘先发, 李强, 李蓉, 黄家淦, 张琼, 李晓飞. 小檗碱联合辛伐他汀对动脉粥样硬化模型大鼠的抗动脉粥样硬化作用及其机制[J]. 吉林大学学报(医学版), 2019, 45(04): 849-854. |
[14] | 王钰聪, 徐英辉, 李宏伟, 王旭, 孙超, 郭晔, 邱实, 马克威. PD1/PD-L1免疫检查点抑制剂治疗非小细胞肺癌的研究进展[J]. 吉林大学学报(医学版), 2019, 45(04): 965-970. |
[15] | 邹俊, 陈冰, 方铭慧, 胡正. 具有人免疫系统和异体人黑色素瘤生长的人源化小鼠模型的构建和鉴定[J]. 吉林大学学报(医学版), 2019, 45(03): 718-724. |
|