吉林大学学报(医学版) ›› 2022, Vol. 48 ›› Issue (1): 154-162.doi: 10.13481/j.1671-587X.20220119

• 临床研究 • 上一篇    下一篇

基于融合基因作用于横纹肌肉瘤的miRNA-mRNA调控网络的生物信息学分析

赵志娟1,孟莲1,刘春霞1,2()   

  1. 1.石河子大学医学院病理学系 石河子大学医学院第一附属医院病理科,新疆 石河子 832002
    2.广州医科大学附属第二医院病理科,广东 广州 510260
  • 收稿日期:2021-05-21 出版日期:2022-01-28 发布日期:2022-01-17
  • 通讯作者: 刘春霞 E-mail:liuliu2239@sina.com
  • 作者简介:赵志娟(1994-),女,山西省运城市人,在读硕士研究生,主要从事软组织肉瘤方面的研究。
  • 基金资助:
    国家自然科学基金项目(81960485)

Bioinformatics analysis on miRNA-mRNA regulatory networks based on fusion genes acting in rhabdomyosarcoma

Zhijuan ZHAO1,Lian MENG1,Chunxia LIU1,2()   

  1. 1.Department of Pathology,First Affiliated Hospital,College of Medical Sciences,Shihezi University,Shihezi 832002,China
    2.Department of Pathology,Second Affiliated Hospital,Guangzhou Medical University,Guangzhou 510260,China
  • Received:2021-05-21 Online:2022-01-28 Published:2022-01-17
  • Contact: Chunxia LIU E-mail:liuliu2239@sina.com

摘要: 目的

利用生物信息学方法构建融合基因在横纹肌肉瘤(RMS)发病机制中潜在的miRNA-mRNA调控网络,为研究RMS提供新方向。

方法

采用GEO2R分析工具筛选融合基因阳性和阴性RMS组织差异表达基因(DEGs)和差异表达miRNA;预测差异表达miRNA的靶基因,重叠DEGs和靶基因筛选出目标基因;采用DAVID数据库对目标基因进行基因本体(GO)功能和京都基因与基因组百科全书(KEGG)通路富集分析。采用STRING和Cytoscape软件构建蛋白-蛋白互作(PPI)网络、筛选Top10 核心基因(hub基因)并构建hub基因与miRNA的分子调控网络,通过Kaplan-Meier生存曲线,分析Top10 hub基因与肉瘤患者预后的关系。

结果

筛选出 891个 DEGs(P<0.01, |logFC|≥1)和14个差异表达miRNA(P<0.05, |logFC|≥3),预测出差异表达miRNA的靶基因1 654个,将靶基因与DEGs重叠共获得115个目标基因。GO功能富集分析,目标基因主要富集在细胞增殖的正向调节、细胞表面和蛋白结合等生物学过程;KEGG信号通路分析,目标基因主要富集在细胞外基质-受体相互作用和癌症中蛋白聚糖等通路。PPI网络中筛出的Top10 hub基因为表皮生长因子受体4(ERBB4)、受体型蛋白质酪氨酸磷酸酶D(PTPRD)、胰岛素受体底物1(IRS1)、整合素金属蛋白酶10(ADAM10)、Yes相关蛋白1(yes YAP1)、转录因子AP-2A(TFAP2A)、细胞黏附分子1(CADM1)、ELAV类似RNA结合蛋白2(ELAVL2)、锌指转录因子1(SNAI1)和ERBB受体反馈抑制剂1(ERRFI1)。生存分析,肉瘤组织中PTPRD(HR=1.79,P=0.005)、ADAM10(HR=1.94,P=0.010)、ELAVL2(HR=1.56,P=0.031)和ERRFI1(HR=2.05,P=0.005)表达水平升高与肉瘤患者的不良预后有关。

结论

本研究筛选出参与RMS发病机制的hub基因和对应的miRNA,构成了miRNA-mRNA网络,为深入研究融合基因与RMS的关系提供了理论依据。

关键词: 横纹肌肉瘤, 融合基因, 生物信息学, miRNA-mRNA调控网络, 差异表达基因

Abstract: Objective

To construct the potential miRNA-mRNA regulatory network of fusion genes in the pathogenesis of rhabdomyosarcoma (RMS)with bioinformatics analysis, and to provide a new direction for the study of RMS.

Methods

GEO2R analysis tool was used to screen the differentially expressed genes (DEGs) and differentially expressed miRNA in fusion-gene-positive and -negative RMS tissues; the target genes of differentially expressed miRNA were predicted; and the target genes on the basis of overlapping DEGs and target genes were screened out. DAVID database was implemented for the GO and KEGG enrichment analysis of target genes. STRING and Cytoscape software were utilized to construct the protein protein interation (PPI) network, the Top10 hub genes were screened out and the molecular regulation networks of hub genes and miRNA were constructed, and the Kaplan-Meier survival curves of the sarcoma patients were drawn.

Results

A total of 891 DEGs (P<0.01,|logFC|≥1) and 14 differentially expressed miRNAs (P<0.05, |logFC|≥3) were screened out. Moreover, 1 654 target genes differentially expressing miRNAs were predicted, and 115 target genes were identified by overlapping the target genes and DEGs. The GO enrichment analysis revealed that the target genes were mainly enriched in the positive regulation of cell proliferation, cell surface, protein binding, and other biological processes. The KEGG signaling pathway analysis revealed that the target genes were mainly enriched in the extracellular matrix-receptor interaction, proteoglycan in cancer, and other pathways. The Top10 hub genes screened out from the PPI network were ERBB4, PTPRD, IRS1, ADAM10, YAP1, TFAP2A, CADM1, ELAVL2, SNAI1, and ERRFI1. The survival analysis showed that the increased expression levels of PTPRD (HR=1.79, P=0.005),ADAM10 (HR =1.94,P=0.010), ELAVL2 (HR = 1.56,P=0.031),and ERRFI1 (HR=2.05,P=0.005) were related to the bad prognosis of the sarcoma patients.

Conclusion

The miRNA-mRNA network is constructed by selecting the hub genes and corresponding miRNA involed in the pathogenesis of RMS, and the study provides a theoretical basis for further study of the relationship between fusion genes and RMS.

Key words: Rhabdomyosarcoma, Fusion gene, Bioinformatics, MiRNA-mRNA regulatory network, Differentially expressed genes

中图分类号: 

  • R738.6