1 |
GBD2019 DISEASES AND INJURIES COLLABORATORS. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet, 2020, 396(10258): 1204-1222.
|
2 |
WU M Y, YIANG G T, LIAO W T, et al. Current mechanistic concepts in ischemia and reperfusion injury[J].Cell Physiol Biochem,2018,46(4):1650-1667.
|
3 |
DATTA A, SARMAH D, MOUNICA L, et al. Cell death pathways in ischemic stroke and targeted pharmacotherapy[J]. Transl Stroke Res, 2020, 11(6): 1185-1202.
|
4 |
BERECZKI D J R, BALLA J, BERECZKI D. Heme oxygenase-1: clinical relevance in ischemic stroke[J]. Curr Pharm Des, 2018, 24(20): 2229-2235.
|
5 |
CHOI J G, KIM S Y, JEONG M, et al. Pharmacotherapeutic potential of ginger and its compounds in age-related neurological disorders[J]. Pharmacol Ther, 2018, 182: 56-69.
|
6 |
MASCOLO N, JAIN R, JAIN S C, et al. Ethnopharmacologic investigation of ginger (Zingiber officinale)[J].J Ethnopharmacol,1989,27(1/2):129-140.
|
7 |
PRASAD S, TYAGI A K. Ginger and its constituents: role in prevention and treatment of gastrointestinal cancer[J]. Gastroenterol Res Pract,2015,2015: 142979.
|
8 |
SOHRABJI F, BAKE S, LEWIS D K. Age-related changes in brain support cells: implications for stroke severity[J]. Neurochem Int, 2013, 63(4): 291-301.
|
9 |
MOSKOWITZ M A, LO E H, IADECOLA C. The science of stroke: mechanisms in search of treatments[J]. Neuron, 2010, 67(2): 181-198.
|
10 |
MOHD YUSOF Y A. Gingerol and its role in chronic diseases[J]. Adv Exp Med Biol, 2016, 929: 177-207.
|
11 |
PRINCE P S M, HEMALATHA K L. A molecular mechanism on the antiapoptotic effects of zingerone in isoproterenol induced myocardial infarcted rats[J]. Eur J Pharmacol, 2018, 821: 105-111.
|
12 |
VAIBHAV K, SHRIVASTAVA P, TABASSUM R, et al. Delayed administration of zingerone mitigates the behavioral and histological alteration via repression of oxidative stress and intrinsic programmed cell death in focal transient ischemic rats[J]. Pharmacol Biochem Behav, 2013, 113: 53-62.
|
13 |
KABUTO H, YAMANUSHI T T. Effects of zingerone[4-(4-hydroxy-3-methoxyphenyl)-2-butanone]and eugenol[2-methoxy-4-(2-propenyl)phenol]on the pathological progress in the 6-hydroxydopamine-induced Parkinson’s disease mouse model[J]. Neurochem Res, 2011, 36(12): 2244-2249.
|
14 |
任辉邦, 张 斌, 尹启超, 等. 山姜素通过PI3K/Nrf2/HO-1通路减少炎症和氧化应激反应改善盲肠结扎和穿刺诱导的脓毒症大鼠的急性肺损伤[J]. 免疫学杂志, 2021, 37(7): 575-583.
|
15 |
李彦霖, 郁 叶, 郭婷莉, 等. 氧化应激和炎症反应中Nrf2/HO-1与MAPK的相关性[J]. 医学综述, 2021, 27(1): 8-13.
|
16 |
LAI C C, CHEN Q, DING Y T, et al. Emodin protected against synaptic impairment and oxidative stress induced by fluoride in SH-SY5Y cells by modulating ERK1/2/Nrf2/HO-1 pathway[J]. Environ Toxicol, 2020, 35(9): 922-929.
|
17 |
WANG J, ISHFAQ M, XU L, et al. METTL3/m6A/miRNA-873-5p attenuated oxidative stress and apoptosis in colistin-induced kidney injury by modulating Keap1/Nrf2 pathway[J]. Front Pharmacol, 2019, 10: 517.
|
18 |
LEE D S, CHA B Y, WOO J T, et al. Acerogenin A from acer nikoense maxim prevents oxidative stress-induced neuronal cell death through Nrf2-mediated heme oxygenase-1 expression in mouse hippocampal HT22 cell line[J]. Molecules, 2015, 20(7): 12545-12557.
|
19 |
YANG Y, XI Z Y, XUE Y, et al. Hemoglobin pretreatment endows rat cortical astrocytes resistance to hemin-induced toxicity via Nrf2/HO-1 pathway[J]. Exp Cell Res, 2017, 361(2): 217-224.
|
20 |
LIU S S, LI G M, TANG H J, et al. Madecassoside ameliorates lipopolysaccharide-induced neurotoxicity in rats by activating the Nrf2-HO-1 pathway[J]. Neurosci Lett, 2019, 709: 134386.
|
21 |
张昊悦, 赵 蓓, 王业皇, 等. 大黄素通过调节Nrf2/HO-1和MAPKs抑制炎症和氧化应激机制研究[J]. 中国免疫学杂志, 2021, 37(9): 1063-1068.
|
22 |
LI H L, TANG Z Y, CHU P, et al. Neuroprotective effect of phosphocreatine on oxidative stress and mitochondrial dysfunction induced apoptosis in vitro and in vivo: involvement of dual PI3K/Akt and Nrf2/HO-1 pathways[J]. Free Radic Biol Med, 2018, 120: 228-238.
|
23 |
巩敏杰, 安佳琪, 吴 锋, 等. 褪黑素通过Nrf2/HO-1信号通路减轻大鼠脑缺血再灌注损伤[J]. 西安交通大学学报(医学版), 2019, 40(6): 857-863.
|
24 |
汪 洋,张 辉, 马东波, 等. 麦冬多糖通过Nrf2/HO-1信号通路对肺缺血再灌注损伤大鼠肺组织的保护作用[J].郑州大学学报(医学版),2023,58(4):464-468.
|
25 |
MIAO Z Y, XIA X, CHE L, et al. Genistein attenuates brain damage induced by transient cerebral ischemia through up-regulation of Nrf2 expression in ovariectomized rats[J].Neurol Res,2018,40(8):689-695.
|
26 |
伍慧茹, 张 磊, 黄美伊, 等. 芬戈莫德(FTY720)通过激活Nrf2/HO-1通路促进大鼠脑缺血再灌注损伤后神经功能恢复[J].细胞与分子免疫学杂志,2021,37(5): 415-420.
|
27 |
HU Q W, ZUO T R, DENG L, et al. β-Caryophyllene suppresses ferroptosis induced by cerebral ischemia reperfusion via activation of the NRF2/HO-1 signaling pathway in MCAO/R rats[J]. Phytomedicine, 2022, 102: 154112.
|
28 |
杨欢欢, 段 毅. 藏红花素通过Nrf2/HO-1通路对脑缺血再灌注大鼠血脑屏障的保护作用[J]. 天津中医药, 2022, 39(8): 1069-1076.
|
29 |
刘宇彤, 车 楠, 李 莉, 等. 花青素通过Nrf-2/HO-1信号通路调控哮喘气道炎症[J]. 免疫学杂志, 2019, 35(1): 36-41.
|