1 |
BEREZHNOY D S, STVOLINSKY S L, LOPACHEV A V, et al. Carnosine as an effective neuroprotector in brain pathology and potential neuromodulator in normal conditions[J]. Amino Acids, 2019, 51(1): 139-150.
|
2 |
KIM E H, KIM E S, SHIN D, et al. Carnosine protects against cerebral ischemic injury by inhibiting matrix-metalloproteinases[J]. Int J Mol Sci, 2021, 22(14): 7495.
|
3 |
VIRDI J K, BHANOT A, JAGGI A S, et al. Investigation on beneficial role of l-carnosine in neuroprotective mechanism of ischemic postconditioning in mice: possible role of histidine histamine pathway[J]. Int J Neurosci, 2020, 130(10): 983-998.
|
4 |
杨文强, 何 鑫, 白 雪, 等. 肌肽对血管性认知障碍大鼠氧化应激及NF-κB信号途径的影响[J]. 吉林大学学报(医学版), 2020, 46(2): 329-334, 434.
|
5 |
HOU K, XU D, LI F Y, et al. The progress of neuronal autophagy in cerebral ischemia stroke: mechanisms, roles and research methods[J]. J Neurol Sci, 2019, 400: 72-82.
|
6 |
SU P W, ZHAI Z, WANG T, et al. Research progress on astrocyte autophagy in ischemic stroke[J]. Front Neurol, 2022, 13: 951536.
|
7 |
YANG B, LI Y Q, MA Y M, et al. Selenium attenuates ischemia/reperfusion injury-induced damage to the blood-brain barrier in hyperglycemia through PI3K/AKT/mTOR pathway-mediated autophagy inhibition[J]. Int J Mol Med, 2021, 48(3): 178.
|
8 |
ZHANG D M, ZHANG T, WANG M M, et al. TIGAR alleviates ischemia/reperfusion-induced autophagy and ischemic brain injury[J]. Free Radic Biol Med, 2019, 137: 13-23.
|
9 |
NDOLO R O, YU L, ZHAO Y, et al. Carnosine-based reversal of diabetes-associated cognitive decline via activation of the akt/mTOR pathway and modulation of autophagy in a rat model of type 2 diabetes mellitus[J]. Dement Geriatr Cogn Disord, 2023, 52(3): 156-168.
|
10 |
AGRAWAL A, RATHOR R, KUMAR R, et al. Endogenous dipeptide-carnosine supplementation ameliorates hypobaric hypoxia-induced skeletal muscle loss via attenuating endoplasmic reticulum stress response and maintaining proteostasis[J]. IUBMB Life, 2022, 74(1): 101-116.
|
11 |
GIRI S, KHAN M, NATH N, et al. The role of AMPK in psychosine mediated effects on oligodendrocytes and astrocytes: implication for Krabbe disease[J]. J Neurochem, 2008, 105(5): 1820-1833.
|
12 |
于 露, 罗杰斯, 任 毅, 等. 肌肽通过激活Nrf2/ARE信号通路改善OGD/R诱导星形胶质细胞损伤[J]. 中国临床解剖学杂志, 2023, 41(3): 310-317, 323.
|
13 |
吴川杰, 宋海庆. 《2018ASA/AHA急性缺血性脑卒中患者早期管理指南》更新解读[J]. 中国全科医学, 2018, 21(14): 1639-1644.
|
14 |
ZHANG Q, JIA M, WANG Y F, et al. Cell death mechanisms in cerebral ischemia-reperfusion injury[J]. Neurochem Res, 2022, 47(12): 3525-3542.
|
15 |
LIM S, KIM T J, KIM Y J, et al. Senolytic therapy for cerebral ischemia-reperfusion injury[J]. Int J Mol Sci, 2021, 22(21): 11967.
|
16 |
ZHOU B, ZUO Y X, JIANG R T. Astrocyte morphology: diversity, plasticity, and role in neurological diseases[J]. CNS Neurosci Ther, 2019, 25(6): 665-673.
|
17 |
LIU X, TIAN F F, WANG S Q, et al. Astrocyte autophagy flux protects neurons against oxygen-glucose deprivation and ischemic/reperfusion injury[J]. Rejuvenation Res, 2018, 21(5): 405-415.
|
18 |
GUO H R, OUYANG Y J, YIN H, et al. Induction of autophagy via the ROS-dependent AMPK-mTOR pathway protects copper-induced spermatogenesis disorder[J]. Redox Biol, 2022, 49: 102227.
|
19 |
KONDO Y, KANZAWA T, SAWAYA R, et al. The role of autophagy in cancer development and response to therapy[J]. Nat Rev Cancer, 2005, 5(9): 726-734.
|
20 |
SHEN Y, TIAN Y Y, YANG J B, et al. Dual effects of carnosine on energy metabolism of cultured cortical astrocytes under normal and ischemic conditions[J]. Regul Pept, 2014, 192/193: 45-52.
|
21 |
SUN B, OU H, REN F, et al. Propofol inhibited autophagy through Ca2+/CaMKKβ/AMPK/mTOR pathway in OGD/R-induced neuron injury[J]. Mol Med, 2018, 24(1): 58.
|
22 |
D’ARCY M S. Cell death: a review of the major forms of apoptosis, necrosis and autophagy[J]. Cell Biol Int, 2019, 43(6): 582-592.
|
23 |
HSIEH S L, LI J H, DONG C D, et al. Carnosine suppresses human colorectal cancer cell proliferation by inducing necroptosis and autophagy and reducing angiogenesis[J]. Oncol Lett, 2022, 23(2): 44.
|
24 |
PATTINGRE S, ESPERT L, BIARD-PIECHACZYK M, et al. Regulation of macroautophagy by mTOR and Beclin 1 complexes[J]. Biochimie, 2008, 90(2): 313-323.
|
25 |
SHI B H, MA M Q, ZHENG Y T, et al. mTOR and Beclin1: two key autophagy-related molecules and their roles in myocardial ischemia/reperfusion injury[J]. J Cell Physiol, 2019, 234(8): 12562-12568.
|
26 |
FANG Y K, XING C H, WANG X Y, et al. Activation of the ROS/HO-1/NQO1 signaling pathway contributes to the copper-induced oxidative stress and autophagy in duck renal tubular epithelial cells[J]. Sci Total Environ, 2021, 757: 143753.
|
27 |
WU Z M, WANG H G, FANG S Y, et al. Roles of endoplasmic reticulum stress and autophagy on H2O2-induced oxidative stress injury in HepG2 cells[J]. Mol Med Rep, 2018, 18(5): 4163-4174.
|
28 |
SEKERDAG E, SOLAROGLU I, GURSOY-OZDEMIR Y. Cell death mechanisms in stroke and novel molecular and cellular treatment options[J]. Curr Neuropharmacol, 2018, 16(9): 1396-1415.
|
29 |
TUO Q Z, ZHANG S T, LEI P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications[J]. Med Res Rev, 2022, 42(1): 259-305.
|
30 |
SHIN W H, PARK J H, CHUNG K C. The central regulator p62 between ubiquitin proteasome system and autophagy and its role in the mitophagy and Parkinson’s disease [J]. BMB Rep, 2020, 53(1): 56-63.
|
31 |
段正昊, 刘永超, 冯 娟. 自身免疫性胶质纤维酸性蛋白星形胶质细胞病研究进展[J]. 中国实用内科杂志,2023, 43(4): 336-339.
|