| 1 |
YU P, WANG Y R, YUAN D H, et al. Vascular normalization: reshaping the tumor microenvironment and augmenting antitumor immunity for ovarian cancer[J]. Front Immunol, 2023, 14:1276694.
|
| 2 |
JIANG Y T, WANG C D, ZHOU S T. Targeting tumor microenvironment in ovarian cancer: premise and promise[J]. Biochim Biophys Acta Rev Cancer, 2020, 1873(2):188361.
|
| 3 |
TIAN W J, LEI N J, ZHOU J Y, et al. Extracellular vesicles in ovarian cancer chemoresistance, metastasis, and immune evasion[J]. Cell Death Dis, 2022, 13(1):64.
|
| 4 |
YUN S H, PARK J I. Recent progress on the role and molecular mechanism of chicken ovalbumin upstream promoter-transcription factor Ⅱ in cancer[J]. J Int Med Res, 2020, 48(4):300060520919236.
|
| 5 |
LANG Q F, XIAO P, ZHAO M, et al. COUP-TFⅡ promotes metastasis and epithelial-to-mesenchymal transition through upregulating Snail in human intrahepatic cholangiocarcinoma[J]. Acta Biochim Biophys Sin, 2020, 52(11):1247-1256.
|
| 6 |
FANG X, LIU C X, ZENG X R, et al. Orphan nuclear receptor COUP-TFⅡ is an oncogenic gene in renal cell carcinoma[J]. Clin Transl Oncol, 2020, 22(5):772-781.
|
| 7 |
MAURI F, SCHEPKENS C, LAPOUGE G, et al. NR2F2 controls malignant squamous cell carcinoma state by promoting stemness and invasion and repressing differentiation[J]. Nat Cancer, 2021, 2(11):1152-1169.
|
| 8 |
RIGGS K A, WICKRAMASINGHE N S, COCHRUM R K, et al. Decreased chicken ovalbumin upstream promoter transcription factor Ⅱ expression in tamoxifen-resistant breast cancer cells[J]. Cancer Res, 2006, 66(20):10188-10198.
|
| 9 |
AL-RAYYAN N, LITCHFIELD L M, IVANOVA M M, et al. 5-Aza-2-deoxycytidine and trichostatin A increase COUP-TFII expression in antiestrogen-resistant breast cancer cell lines[J]. Cancer Lett, 2014, 347(1):139-150.
|
| 10 |
SAFE S, JIN U H, HEDRICK E, et al. Minireview: role of orphan nuclear receptors in cancer and potential as drug targets[J]. Mol Endocrinol, 2014, 28(2):157-172.
|
| 11 |
ARMSTRONG D K, ALVAREZ R D, BACKES F J, et al. NCCN guidelines® insights: ovarian cancer, version 3.2022[J]. J Natl Compr Canc Netw, 2022, 20(9):972-980.
|
| 12 |
POLVANI S, PEPE S, MILANI S, et al. COUP-TFII in health and disease[J]. Cells, 2019, 9(1):101.
|
| 13 |
WANG L M, CHENG C M, QIN J, et al. Small-molecule inhibitor targeting orphan nuclear receptor COUP-TFII for prostate cancer treatment[J]. Sci Adv, 2020, 6(18): eaaz8031.
|
| 14 |
DING W J, ZHANG Y D, CAI H L, et al. Overexpression of COUP‑TFII suppresses proliferation and metastasis of human gastric cancer cells[J]. Mol Med Rep, 2018, 17(2):2393-2401.
|
| 15 |
YUN S H, PARK J I. Coup-TFⅡ overexpression inhibits cell proliferation and invasion via increased expression of p53 and pten and decreased Akt phosphorylation in human colorectal cancer SNU-C4 cells[J]. Anticancer Res, 2020, 40(2):767-777.
|
| 16 |
COOPER J, GIANCOTTI F G. Integrin signaling in cancer: mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance[J]. Cancer Cell, 2019, 35(3):347-367.
|
| 17 |
HUANG T Z, SONG X, XU D D, et al. Stem cell programs in cancer initiation, progression, and therapy resistance[J]. Theranostics, 2020, 10(19):8721-8743.
|
| 18 |
MIRZAEI S, PASKEH M D A, ENTEZARI M, et al. SOX2 function in cancers: Association with growth, invasion, stemness and therapy response[J]. Biomedecine Pharmacother, 2022, 156:113860.
|
| 19 |
ZHU Y, HUANG S M, CHEN S Y, et al. SOX2 promotes chemoresistance, cancer stem cells properties, and epithelial-mesenchymal transition by β-catenin and Beclin1/autophagy signaling in colorectal cancer[J]. Cell Death Dis, 2021, 12(5):449.
|
| 20 |
LOPEZ-BERTONI H, JOHNSON A, RUI Y, et al. Sox2 induces glioblastoma cell stemness and tumor propagation by repressing TET2 and deregulating 5hmC and 5mC DNA modifications[J]. Signal Transduct Target Ther, 2022, 7(1):37.
|
| 21 |
TANG S, NING Q, YANG L, et al. Mechanisms of immune escape in the cancer immune cycle[J]. Int Immunopharmacol, 2020, 86:106700.
|
| 22 |
LEI Q Y, WANG D, SUN K, et al. Resistance mechanisms of anti-PD1/PDL1 therapy in solid tumors[J]. Front Cell Dev Biol, 2020, 8:672.
|
| 23 |
KORNEPATI A V R, VADLAMUDI R K, CURIEL T J. Programmed death ligand 1 signals in cancer cells[J]. Nat Rev Cancer, 2022, 22(3):174-189.
|
| 24 |
FANG W L, ZHOU T, SHI H, et al. Progranulin induces immune escape in breast cancer via up-regulating PD-L1 expression on tumor-associated macrophages (TAMs) and promoting CD8+ T cell exclusion[J]. J Exp Clin Cancer Res, 2021, 40(1):4.
|
| 25 |
MA X X, JIA S Q, WANG G J, et al. TRIM28 promotes the escape of gastric cancer cells from immune surveillance by increasing PD-L1 abundance[J]. Signal Transduct Target Ther, 2023, 8(1):246.
|
| 26 |
MORAND S, DEVANABOYINA M, STAATS H, et al. Ovarian cancer immunotherapy and personalized medicine[J]. Int J Mol Sci, 2021, 22(12):6532.
|
| 27 |
ALWOSAIBAI K, AALMRI S, MASHHOUR M, et al. PD-L1 is highly expressed in ovarian cancer and associated with cancer stem cells populations expressing CD44 and other stem cell markers[J]. BMC Cancer, 2023, 23(1):13.
|
| 28 |
MOINUL M, AMIN S A, JHA T, et al. Updated chemical scaffolds of ABCG2 inhibitors and their structure-inhibition relationships for future development[J]. Eur J Med Chem, 2022, 241:114628.
|
| 29 |
RONG D D, WANG C W, ZHANG X M, et al. A novel taxane, difluorovinyl-ortataxel, effectively overcomes paclitaxel-resistance in breast cancer cells[J]. Cancer Lett, 2020, 491:36-49.
|
| 30 |
LOKMAN N A, PRICE Z K, HAWKINS E K, et al. 4-methylumbelliferone inhibits cancer stem cell activation and overcomes chemoresistance in ovarian cancer[J]. Cancers (Basel), 2019, 11(8):1187.
|