1 |
LHEUREUX S, GOURLEY C, VERGOTE I, et al. Epithelial ovarian cancer[J]. Lancet,2019,393(10177): 1240-1253.
|
2 |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2021,71(3):209-249.
|
3 |
BARNETT R. Ovarian cancer[J]. Lancet, 2016, 387(10025): 1265.
|
4 |
MUSTAZZOLU A, BORRONI E, CIRILLO D M, et al. Trend in rifampicin-, multidrug- and extensively drug-resistant tuberculosis in Italy, 2009-2016[J]. Eur Respir J, 2018, 52(1): 1800070.
|
5 |
BERKEL C, CACAN E. Differential expression and copy number variation of gasdermin (GSDM) family members, pore-forming proteins in pyroptosis, in normal and malignant serous ovarian tissue[J]. Inflammation, 2021, 44(6): 2203-2216.
|
6 |
ZHENG Y, YUAN D, ZHANG F, et al. A systematic pan-cancer analysis of the gasdermin (GSDM) family of genes and their correlation with prognosis, the tumor microenvironment, and drug sensitivity[J]. Front Genet, 2022, 13: 926796.
|
7 |
ZHANG X W, ZHANG P, AN L, et al. Miltirone induces cell death in hepatocellular carcinoma cell through GSDME-dependent pyroptosis[J]. Acta Pharm Sin B, 2020, 10(8): 1397-1413.
|
8 |
ZHANG Z B, ZHANG Y, XIA S Y, et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity[J]. Nature, 2020, 579(7799): 415-420.
|
9 |
WANG Y B, YIN B, LI D N, et al. GSDME mediates caspase-3-dependent pyroptosis in gastric cancer[J]. Biochem Biophys Res Commun,2018,495(1):1418-1425.
|
10 |
TAN G, HUANG C Y, CHEN J Y, et al. HMGB1 released from GSDME-mediated pyroptotic epithelial cells participates in the tumorigenesis of colitis-associated colorectal cancer through the ERK1/2 pathway[J]. J Hematol Oncol, 2020, 13(1): 149.
|
11 |
石 瑛, 任静静, 梁 晨, 等. GSDME通过调控细胞焦亡影响乳腺癌MCF-7细胞对紫杉醇的敏感性[J]. 中国肿瘤生物治疗杂志, 2019, 26(2): 146-151.
|
12 |
高世华, 李植锋, 蔡键锋. GSDME通过p53、caspase3增强小细胞肺癌细胞的紫杉醇敏感[J]. 医学研究杂志, 2021, 50(10): 138-142.
|
13 |
JIANG M X, QI L, LI L S,et al.The caspase-3/GSDME signal pathway as a switch between apoptosis and pyroptosis in cancer[J]. Cell Death Discov, 2020, 6: 112.
|
14 |
GALLET P, OUSSALAH A, POUGET C, et al. Integrative genomics analysis of nasal intestinal-type adenocarcinomas demonstrates the major role of CACNA1C and paves the way for a simple diagnostic tool in male woodworkers[J]. Clin Epigenetics, 2021, 13(1): 179.
|
15 |
KRAUS D, WEIDER S, PROBSTMEIER R, et al. Neoexpression of JUNO in oral tumors is accompanied with the complete suppression of four other genes and suggests the application of new biomarker tools[J]. J Pers Med, 2022, 12(3): 494.
|
16 |
TONMOY M I Q, FARIHA A, HAMI I, et al. Computational epigenetic landscape analysis reveals association of CACNA1G-AS1,F11-AS1,NNT-AS1,and MSC-AS1 lncRNAs in prostate cancer progression through aberrant methylation[J]. Sci Rep, 2022,12(1): 10260.
|
17 |
YAN Y, HE W, CHEN Y, et al. Comprehensive analysis to identify the encoded gens of sodium channels as a prognostic biomarker in hepatocellular carcinoma[J]. Front Genet, 2022, 12: 802067.
|
18 |
MARIANI A, WANG C, OBERG A L, et al. Genes associated with bowel metastases in ovarian cancer[J]. Gynecol Oncol, 2019, 154(3): 495-504.
|
19 |
PENG C J, LI L C, LUO G X, et al. Integrated analysis of the M2 macrophage-related signature associated with prognosis in ovarian cancer[J]. Front Oncol, 2022, 12: 986885.
|
20 |
ZHAO W P, WANG H W, LIU J, et al. Mitochondrial respiratory chain complex abnormal expressions and fusion disorder are involved in fluoride-induced mitochondrial dysfunction in ovarian granulosa cells[J]. Chemosphere, 2019, 215: 619-625.
|
21 |
ANNESLEY S J, FISHER P R. Mitochondria in health and disease[J]. Cells, 2019, 8(7): 680.
|
22 |
ASHRAFI G, SCHWARZ T L. The pathways of mitophagy for quality control and clearance of mitochondria[J]. Cell Death Differ, 2013,20(1): 31-42.
|
23 |
SHARMA P, HU-LIESKOVAN S, WARGO J A, et al. Primary, adaptive, and acquired resistance to cancer immunotherapy[J]. Cell, 2017,168(4): 707-723.
|
24 |
LI F, XIA Q, REN L, et al. GSDME increases chemotherapeutic drug sensitivity by inducing pyroptosis in retinoblastoma cells[J]. Oxid Med Cell Longev, 2022, 2022: 2371807.
|
25 |
RIOJA-BLANCO E, ARROYO-SOLERA I, ÁLAMO P, et al. CXCR4-targeted nanotoxins induce GSDME-dependent pyroptosis in head and neck squamous cell carcinoma[J]. J Exp Clin Cancer Res, 2022, 41(1): 49.
|