Journal of Jilin University(Medicine Edition) ›› 2022, Vol. 48 ›› Issue (4): 1071-1078.doi: 10.13481/j.1671-587X.20220431
• Review • Previous Articles
Received:
2021-08-20
Online:
2022-07-28
Published:
2022-07-26
CLC Number:
1 | JEON J, DU M M, SCHOEN R E, et al. Determining risk of colorectal cancer and starting age of screening based on lifestyle, environmental, and genetic factors[J]. Gastroenterology, 2018,154(8):2152-2164.e19. |
2 | SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. |
3 | AKIMOTO N, UGAI T, ZHONG R, et al. Rising incidence of early-onset colorectal cancer-a call to action[J]. Nat Rev Clin Oncol, 2021, 18(4): 230-243. |
4 | ESPENSCHIED C R, LADUCA H, LI S W, et al. Multigene panel testing provides a new perspective on lynch syndrome[J]. J Clin Oncol, 2017, 35(22): 2568-2575. |
5 | SHAH R S, PLESEC T, BHATT A. Abnormal biliary mucosa uncovered in a familial adenomatous polyposis patient[J]. Gastroenterology, 2020, 158(5): e1-e2. |
6 | SENGUPTA S, BOSE S. Peutz-jeghers syndrome[J]. N Engl J Med,2019,380(5):472. |
7 | BARREAU F, TISSEYRE C, MÉNARD S, et al. Titanium dioxide particles from the diet: involvement in the genesis of inflammatory bowel diseases and colorectal cancer[J]. Part Fibre Toxicol, 2021, 18(1): 26. |
8 | HONG S N. Genetic and epigenetic alterations of colorectal cancer[J]. Intest Res, 2018, 16(3): 327-337. |
9 | WILD C P. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology[J]. Cancer Epidemiol Biomarkers Prev, 2005, 14(8): 1847-1850. |
10 | ZHAO Y H, WANG C X, GOEL A. Role of gut microbiota in epigenetic regulation of colorectal cancer[J]. Biochim Biophys Acta Rev Cancer,2021, 1875(1): 188490. |
11 | HOLLISTER E B, GAO C X, VERSALOVIC J. Compositional and functional features of the gastrointestinal microbiome and their effects on human health[J]. Gastroenterology, 2014, 146(6): 1449-1458. |
12 | BELKAID Y, HARRISON O J. Homeostatic immunity and the microbiota[J]. Immunity,2017,46(4): 562-576. |
13 | WEYRICH A, LENZ D, FICKEL J. Environmental change-dependent inherited epigenetic response[J]. Genes (Basel), 2018, 10(1): E4. |
14 | WEYRICH A, YASAR S, LENZ D, et al. Tissue-specific epigenetic inheritance after paternal heat exposure in male wild Guinea pigs[J]. Mamm Genome, 2020, 31(5/6): 157-169. |
15 | WU J M, ZHAO Y, WANG X, et al. Dietary nutrients shape gut microbes and intestinal mucosa via epigenetic modifications[J]. Crit Rev Food Sci Nutr, 2022,62(3): 783-797. |
16 | DOVE W F, CLIPSON L, GOULD K A, et al. Intestinal neoplasia in the ApcMin mouse: independence from the microbial and natural killer (beige locus) status[J]. Cancer Res, 1997, 57(5): 812-814. |
17 | FENG Q, LIANG S S, JIA H J, et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence[J]. Nat Commun, 2015, 6: 6528. |
18 | DAI Z W, COKER O O, NAKATSU G, et al. Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers[J]. Microbiome,2018,6(1): 70. |
19 | YU J, FENG Q, WONG S H, et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer[J]. Gut, 2017, 66(1): 70-78. |
20 | NAKATSU G, LI X C, ZHOU H K, et al. Gut mucosal microbiome across stages of colorectal carcinogenesis[J]. Nat Commun, 2015, 6: 8727. |
21 | GALLOWAY-PEÑA J R, SMITH D P, SAHASRABHOJANE P, et al. Characterization of oral and gut microbiome temporal variability in hospitalized cancer patients[J]. Genome Med, 2017, 9(1): 21. |
22 | GHOSH T S, DAS M, JEFFERY I B, et al. Adjusting for age improves identification of gut microbiome alterations in multiple diseases[J].Elife,2020,9: e50240. |
23 | MIZUTANI S, YAMADA T, YACHIDA S. Significance of the gut microbiome in multistep colorectal carcinogenesis[J]. Cancer Sci, 2020, 111(3): 766-773. |
24 | STRACHAN D P. Hay fever, hygiene, and household size[J]. BMJ, 1989, 299(6710): 1259-1260. |
25 | KOLIARAKIS I, PSAROULAKI A, NIKOLOUZAKIS T K, et al. Intestinal microbiota and colorectal cancer: a new aspect of research[J]. J BUON, 2018, 23(5): 1216-1234. |
26 | KOULOURIS A, TSAGKARIS C, MESSARITAKIS I, et al. Resectable colorectal cancer: current perceptions on the correlation of recurrence risk, microbiota and detection of genetic mutations in liquid biopsies[J]. Cancers, 2021, 13(14): 3522. |
27 | TOJO R, SUÁREZ A, CLEMENTE M G, et al. Intestinal microbiota in health and disease: role of bifidobacteria in gut homeostasis[J]. World J Gastroenterol, 2014, 20(41): 15163-15176. |
28 | GOGOKHIA L, BUHRKE K, BELL R, et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis[J]. Cell Host Microbe, 2019, 25(2): 285-299.e8. |
29 | CHENG A S L, LI M S, KANG W, et al. Helicobacter pylori causes epigenetic dysregulation of FOXD3 to promote gastric carcinogenesis[J]. Gastroenterology, 2013, 144(1): 122-133.e9. |
30 | NAKATA K, SUGI Y, NARABAYASHI H, et al. Commensal microbiota-induced microRNA modulates intestinal epithelial permeability through the small GTPase ARF4[J]. J Biol Chem, 2017, 292(37): 15426-15433. |
31 | LIANG L X, AI L Y, QIAN J, et al. Long noncoding RNA expression profiles in gut tissues constitute molecular signatures that reflect the types of microbes[J]. Sci Rep, 2015, 5: 11763. |
32 | MOLONEY G M, VIOLA M F, HOBAN A E, et al. Faecal microRNAs: indicators of imbalance at the host-microbe interface? [J]. Benef Microbes, 2018, 9(2): 175-183. |
33 | KOSTIC A D, GEVERS D, PEDAMALLU C S,et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma[J].Genome Res,2012,22(2): 292-298. |
34 | LI Y Y, GE Q X, CAO J, et al. Association of Fusobacterium nucleatum infection with colorectal cancer in Chinese patients[J]. World J Gastroenterol, 2016, 22(11): 3227-3233. |
35 | SUEHIRO Y, SAKAI K H, NISHIOKA M, et al. Highly sensitive stool DNA testing of Fusobacterium nucleatum as a marker for detection of colorectal tumours in a Japanese population[J]. Ann Clin Biochem, 2017, 54(1): 86-91. |
36 | OH H J, KIM J H, BAE J M, et al. Prognostic impact of fusobacterium nucleatum depends on combined tumor location and microsatellite instability status in stage Ⅱ/Ⅲ colorectal cancers treated with adjuvant chemotherapy[J]. J Pathol Transl Med, 2019, 53(1): 40-49. |
37 | SUN C H, LI B B, WANG B, et al. The role of Fusobacterium nucleatum in colorectal cancer: from carcinogenesis to clinical management[J]. Chronic Dis Transl Med, 2019, 5(3): 178-187. |
38 | KOMIYA Y, SHIMOMURA Y, HIGURASHI T,et al. Patients with colorectal cancer have identical strains of Fusobacterium nucleatum in their colorectal cancer and oral cavity[J]. Gut, 2019, 68(7): 1335-1337. |
39 | HALE V L, CHEN J, JOHNSON S, et al. Shifts in the fecal microbiota associated with adenomatous polyps[J]. Cancer Epidemiol Biomarkers Prev, 2017, 26(1): 85-94. |
40 | DREWES J L, CORONA A, SANCHEZ U, et al. Transmission and clearance of potential procarcinogenic bacteria during fecal microbiota transplantation for recurrent Clostridioides difficile[J]. JCI Insight, 2019, 4(19): e130848. |
41 | NAKATSU G, ZHOU H K, WU W K K, et al. Alterations in enteric virome are associated with colorectal cancer and survival outcomes[J]. Gastroenterology, 2018, 155(2): 529-541.e5. |
42 | BOLEIJ A, MVAN GELDER M, SWINKELS D W, et al. Clinical Importance of Streptococcus gallolyticus infection among colorectal cancer patients: systematic review and meta-analysis[J].Clin Infect Dis,2011,53(9): 870-878. |
43 | BODAGHI S, YAMANEGI K, XIAO S Y, et al. Colorectal papillomavirus infection in patients with colorectal cancer[J]. Clin Cancer Res, 2005, 11(8): 2862-2867. |
44 | KOSTIC A D, CHUN E, ROBERTSON L, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment[J]. Cell Host Microbe, 2013,14(2): 207-215. |
45 | KASHANI N, BEZMIN ABADI A T, RAHIMI F,et al.FadA-positive Fusobacterium nucleatum is prevalent in biopsy specimens of Iranian patients with colorectal cancer[J]. New Microbes New Infect, 2020, 34: 100651. |
46 | RANJBAR M, SALEHI R, HAGHJOOY JAVANMARD S, et al. The dysbiosis signature of Fusobacterium nucleatum in colorectal cancer-cause or consequences? A systematic review[J]. Cancer Cell Int, 2021, 21(1): 194. |
47 | RUBINSTEIN M R, WANG X W, LIU W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin[J]. Cell Host Microbe, 2013, 14(2): 195-206. |
48 | KONG C, YAN X B, ZHU Y F, et al. Fusobacterium nucleatum promotes the development of colorectal cancer by activating a cytochrome P450/epoxyoctadecenoic acid axis via TLR4/Keap1/NRF2 signaling[J]. Cancer Res, 2021, 81(17): 4485-4498. |
49 | YAN X B, LIU L G, LI H, et al. Clinical significance of Fusobacterium nucleatum, epithelial-mesenchymal transition, and cancer stem cell markers in stage Ⅲ/Ⅳ colorectal cancer patients[J]. Onco Targets Ther, 2017, 10: 5031-5046. |
50 | PROENÇA M A, BISELLI J M, SUCCI M, et al. Relationship between Fusobacterium nucleatum, inflammatory mediators and microRNAs in colorectal carcinogenesis[J].World J Gastroenterol,2018,24(47): 5351-5365. |
51 | CHEN T, LI Q, WU J, et al. Fusobacterium nucleatum promotes M2 polarization of macrophages in the microenvironment of colorectal tumours via a TLR4-dependent mechanism[J]. Cancer Immunol Immunother, 2018, 67(10): 1635-1646. |
52 | HU L J, LIU Y, KONG X H, et al. Fusobacterium nucleatum facilitates M2 macrophage polarization and colorectal carcinoma progression by activating TLR4/NF-κB/S100A9 cascade[J]. Front Immunol, 2021, 12: 658681. |
53 | KORDAHI M C, STANAWAY I B, AVRIL M, et al. Genomic and functional characterization of a mucosal symbiont involved in early-stage colorectal cancer[J]. Cell Host Microbe, 2021, 29(10): 1589-1598.e6. |
54 | LONG X H, WONG C C, TONG L, et al. Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity[J]. Nat Microbiol, 2019, 4(12): 2319-2330. |
55 | TSOI H, CHU E S H, ZHANG X, et al. Peptostreptococcus anaerobius induces intracellular cholesterol biosynthesis in colon cells to induce proliferation and causes dysplasia in mice[J]. Gastroenterology, 2017, 152(6): 1419-1433.e5. |
56 | SABIT H, CEVIK E, TOMBULOGLU H. Colorectal cancer: the epigenetic role of microbiome[J]. World J Clin Cases, 2019, 7(22): 3683-3697. |
57 | GOMES S D, OLIVEIRA C S, AZEVEDO-SILVA J, et al. The role of diet related short-chain fatty acids in colorectal cancer metabolism and survival: prevention and therapeutic implications[J]. Curr Med Chem, 2020, 27(24): 4087-4108. |
58 | YANG J, YU J. The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get[J]. Protein Cell, 2018, 9(5): 474-487. |
59 | MA H, YU Y, WANG M M, et al. Correlation between microbes and colorectal cancer: tumor apoptosis is induced by sitosterols through promoting gut microbiota to produce short-chain fatty acids[J]. Apoptosis, 2019, 24(1/2): 168-183. |
60 | WANG G, YU Y, WANG Y Z, et al. Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy[J]. J Cell Physiol, 2019, 234(10): 17023-17049. |
61 | FANG Y K, YAN C, ZHAO Q, et al. The roles of microbial products in the development of colorectal cancer:a review[J].Bioengineered,2021,12(1):720-735. |
62 | JIA W, XIE G X, JIA W P. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(2): 111-128. |
63 | LIU T Y, SONG X L, KHAN S, et al. The gut microbiota at the intersection of bile acids and intestinal carcinogenesis: an old story, yet mesmerizing[J]. Int J Cancer, 2020, 146(7): 1780-1790. |
64 | DALAL N, JALANDRA R, BAYAL N, et al. Gut microbiota-derived metabolites in CRC progression and causation[J]. J Cancer Res Clin Oncol, 2021, 147(11): 3141-3155. |
65 | CHATTOPADHYAY I, DHAR R, PETHUSAMY K,et al. Exploring the role of gut microbiome in colon cancer[J]. Appl Biochem Biotechnol, 2021, 193(6): 1780-1799. |
[1] | Qian LIU,Guoping QI,Huayi YU,Yuyang DAI,Wenbin LU,Jianhua JIN. Bioinformatics analysis on screening of colon cancer core genes and independent prognostic factors [J]. Journal of Jilin University(Medicine Edition), 2022, 48(3): 755-765. |
[2] | Suxian CHEN,Zehui GU,Yangfei MA,Qi TAN,Qi LI,Yadi WANG. Promotion effect of rutin on apoptosis of human colon cancer SW480 cells and its mechanism [J]. Journal of Jilin University(Medicine Edition), 2022, 48(2): 356-363. |
[3] | Lili HUANG,Yuxuan LIU,Kaiyi FANG,Yeteng MU,Nannan HU,Chong GUO,Fuxu YANF,Xingang GUAN. Preparation of oxaliplatin-loaded cell membrane nanodrugs and its killing effect on colon cancer cells of mice [J]. Journal of Jilin University(Medicine Edition), 2021, 47(6): 1422-1428. |
[4] | Bo MA, Jiangang LI, Jun WANG, Junli HOU, Liang LI. Promotion effect of miR-106b on invasion and migration of colon cancer cells through targeting TGF-β/Smad pathway [J]. Journal of Jilin University(Medicine Edition), 2021, 47(3): 630-636. |
[5] | Xiaohui LI, Ziwei QU, Xin LU, Qingbin MENG, Huatao CHEN, Jun REN, Chengpei TAN. Regulatory effect of exosomes carrying miR-196b-5p derived from bone marrow mesenchymal stem cells on biological characteristics of colon cancer cells [J]. Journal of Jilin University(Medicine Edition), 2021, 47(3): 660-668. |
[6] | Xia LI,Yi YU,Haiwei ZUO,Fengjuan ZHOU,Yong XIN. Inhibitory effect of circRNA on colorectal cancer and its bioinformatics analysis [J]. Journal of Jilin University(Medicine Edition), 2020, 46(6): 1283-1287. |
[7] | YAN Shengyu, XIE Yafeng, XU Zhijie, LIU Ying, DING Yating, ZHANG Qiao, LIU Wanying, LIU Libing. Inhibitory effect of antimicrobial peptide LL-37 on tumorgrowth of mice with colon cancer and its mechanism [J]. Journal of Jilin University(Medicine Edition), 2020, 46(03): 575-581. |
[8] | FENG Jie, REN Liqun, CHEN Suxian, WAN Yizeng, XU Peibin. Inhibitory effects of cucurbitacin B combined with oxaliplatin on proliferation and apoptosis of human colon cancer SW480 cells and their mechanisms [J]. Journal of Jilin University(Medicine Edition), 2020, 46(01): 78-83. |
[9] | LI Hua, CAO Yansha, ZHAO Jinping, REN Fu, LI Ning. Expression of SIRT6 protein in colon cancer tissue detected by tissue microarray technique and its clinical significance [J]. Journal of Jilin University(Medicine Edition), 2019, 45(04): 893-898. |
[10] | WANG Dan, SONG Ziqi, LI Yifei, LI Chun, DONG Zhiheng, DONG Ying, GAI Xiaodong. Expressions of Foxp3+ regulatory T cells and myeloid dentritic cells in human colorectal cancer and tumor draining lymph node tissues and their significances [J]. Journal of Jilin University(Medicine Edition), 2019, 45(03): 621-626. |
[11] | YANG Xueliang, WANG Minghua, LIU Yanbo, SUN Xuemei, ZHAO Xiahui, YANG Lijuan, XIAO Zishen. Effect of recombinant human IL-17A on growth of colon cancer cells and its mechanism [J]. Journal of Jilin University(Medicine Edition), 2019, 45(02): 258-261. |
[12] | WANG Tinggang, XUE Feng, LI Yu, NIU Zhaojian, WANG Ye. Effects of miR-26a targeting HMGA1 gene on growth, invasion and migration of colon cancer cells [J]. Journal of Jilin University(Medicine Edition), 2018, 44(06): 1205-1211. |
[13] | WANG Dan, LI Yifei, LI Chun, DONG Zhiheng, DONG Ying, GAI Xiaodong. Relationships between expressions of B7-H1 and B7-H4 and Foxp3+ regulated T-cell infiltration in colorectal cancer tissue [J]. Journal of Jilin University Medicine Edition, 2018, 44(03): 543-547. |
[14] | YANG Xueliang, SUN Xuemei, ZHAO Xiaohui, YANG Lijuan, SHEN Weigao, XIAO Zishen, GUO Chong, LIU Yanbo. Expressions of IL-17E, IL-17F and their receptors in colorectal carcinoma tissue and their significances [J]. Journal of Jilin University Medicine Edition, 2018, 44(03): 574-578. |
[15] | CAO Yansha, LI Hua, CHEN Minghong, LIU Baoqin, WANG Huaqin, LI Ning. Expression of BAG3 protein in colon cancer tissue detected by tissue microarray method and its clinical significance [J]. Journal of Jilin University Medicine Edition, 2017, 43(06): 1177-1181. |
|