吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (4): 1043-1049.doi: 10.13278/j.cnki.jjuese.20170100

• 地质与资源 • 上一篇    下一篇

3种无机盐催化热解油页岩

日比娅, 孙友宏, 韩婧, 郭明义   

  1. 吉林大学建设工程学院, 长春 130026
  • 收稿日期:2017-11-11 出版日期:2018-07-26 发布日期:2018-07-26
  • 通讯作者: 孙友宏(1965-),男,教授,博士生导师,主要从事地质工程、科学钻探、油页岩等方向的研究,E-mail:syh@jlu.edu.cn E-mail:syh@jlu.edu.cn
  • 作者简介:日比娅(1984-),女,硕士研究生(留学生),主要从事油页岩热解新方法研究,E-mail:3082851324@qq.com
  • 基金资助:
    国家自然科学基金项目(51604123);吉林省科技发展计划项目(20150520073JH);国土资源部复杂条件钻采技术重点实验室开放课题(2016-2017)

Catalytic Pyrolysis of Oil Shale in the Presence of Three Kinds of Inorganic Salt

Abakar Rabiea, Sun Youhong, Han Jing, Guo Mingyi   

  1. College of Construction Engineering, Jilin University, Changchun 130026, China
  • Received:2017-11-11 Online:2018-07-26 Published:2018-07-26
  • Supported by:
    Supported by National Natural Science Foundation of China (51604123), Science and Technology Development Project of Jilin Province, China (20150520073JH) and Open Project of Key Laboratory of Complicated Condition Drilling Technology of Ministry of Land and Resources, China (2016-2017)

摘要: 为了发展油页岩催化热解方法,本文对油页岩中干酪根在催化剂(SnCl2,MoCl5,ZnCl2)作用下的热解转化进行了研究。运用傅里叶变换红外光谱(FT-IR)、X射线衍射(XRD)、热重(TG)分析等手段对样品在较低温度下(350℃)热解前后的半焦产物进行了分析,利用Coats-Redfern方法计算了热解后的残余半焦动力学参数。结果表明,催化剂可以使干酪根在350℃发生热解反应,同时也能够降低残余半焦的活化能,其中SnCl2、MoCl5和ZnCl2催化处理后残余半焦的活化能分别降低15.10、10.66和20.58 kJ/mol。

关键词: 油页岩, 热解, 催化剂, 动力学

Abstract: The pyrolysis of oil shale in the presence of the catalysis metal chloride (stannous chloride, molybdenum chloride, zinc chloride) was evaluated. Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and thermogravimetric (TG) analysis were conducted to characterize the solid residues. Moreover, the kinetic parameters were calculated using the Coats-Redfern method. The results showed that catalysts can promote the organic conversion to oil and gas at low temperature, and also effect on the activation energy of the solid residues, particularly with stannous chloride, molybdenum chloride and zinc chloride, with which the activation energy decreased about 15.10, 10.66 and 20.58 kJ/mol respectively compared to those with no catalyst therein.

Key words: oil shale, pyrolysis, catalyst, kinetics

中图分类号: 

  • P618.12
[1] Na Jeong geol, Lm Cheol hyun, Chung Soo hyun, et al. Effect of Oil Shale Retorting Temperature on Shale Oil Yield and Properties[J]. Fuel, 2012, 95(1):131-135.
[2] 钱家麟,王剑秋,李述元. 世界油页岩资源利用和发展趋势[J].吉林大学学报(地球科学版), 2006, 36(6):877-887. Qian Jialin, Wang Jianqiu, Li Shuyuan. World Oil Shale Utilization and Its Future[J]. Journal of Jilin University (Earth Science Edition), 2006, 36(6):877-887.
[3] Jiang X M, Han X X, Cui Z G. Progress and Recent Utilization Trends in Combustion of Chinese Oil Shale[J]. Progress in Energy and Combustion Science, 2007, 33(6):552-579.
[4] Pan Yi, Zhang Xiaoming, Liu Shouhui, et al. A Review on Technologies for Oil Shale Surface Retort[J]. Journal of the Chemical Society of Pakistan, 2012, 34(6):1331-1338.
[5] Al-Makhadmeh L, Maier J, Scheffknecht G. Oxyfuel Technology:No Reduction During Oxy-Oil Shale Conditions[J]. Fuel, 2014, 128(21):155-161.
[6] Tiwari P, Deo M, Lin C L, et al. Characterization of Oil Shale Pore Structure Before and After Pyrolysis by Using X-Ray Micro CT[J]. Fuel, 2013, 107(9):547-554.
[7] Yan Junwei, Jiang Xiumin, Han Xiangxin, et al. A TG-FTIR Investigation to the Catalytic Effect of Mineral Matrix in Oil Shale on the Pyrolysis and Combustion of Kerogen[J]. Fuel, 2013, 104(2):307-317.
[8] Allawzi M, Al-Otoom A, Allaboun H, et al. CO2 Supercritical Fluid Extraction of Jordanian Oil Shale Utilizing Different Co-Solvents[J]. Fuel Processing Technology, 2011, 92(10):2016-2023.
[9] Liu Zhaojun, Dong Qingshui, Ye Songqing, et al. Oil Shale Character and Exploitation & Utilization Prospect[J]. Earth Science Frontiers, 2005, 12(3):315-323.
[10] Han Shuangbiao, Zhang Jinchuan, Li Yuxi, et al. Evaluation of Lower Cambrian Shale in Northern Guizhou Province, South China:Implications for Shale Gas Potential[J]. Energy & Fuels, 2013, 27(6):2933-2941.
[11] 刘招君,董清水,叶松青,等.中国油页岩资源现状[J]. 吉林大学学报(地球科学版),2006,36(5):869-876. Liu Zhaojun, Dong Qingshui, Ye Songqing, et al. The Situation of Oil Shale Resources in China[J]. Journal of Jilin University (Earth Science Edition), 2006, 36(6):869-876.
[12] Sun P, Sachsenhofer R F, Liu Z, et al. Organic Matter Accumulation in the Oil Shale-and Coal-Bearing Huadian Basin (Eocene; NE China)[J]. International Journal of Coal Geology, 2013, 105:1-15.
[13] Sun Youhong, Bai Fengtian, Liu Baochang, et al. Characterization of the Oil Shale Products Derived via Topochemical Reaction Method[J]. Fuel, 2014, 115(1):338-346.
[14] Guo Hongfan, Bie Yansong,Wang Kuikui, et al. Retorting Oil Shale by a Self-Heating Route[J]. Energ & Fuel, 2013, 27(5):2445-2451.
[15] Ballice L. Stepwise Chemical Demineralization of Göynük (Turkey) Oil Shale and Pyrolysis of Demineralization Products[J]. Industrial & Engineering Chemistry Research, 2006, 45(3):906-912.
[16] Patterson J H. A Review of the Effects of Minerals in Processing of Australian Oil Shales[J]. Fuel, 1994, 73(3):321-327.
[17] Wlliams P T, Chishti H M. Two Stage Pyrolysis of Oil Shale Using a Zeolite Catalyst[J]. Journal of Analytical & Applied Pyrolysis, 2000, 55(2):217-234.
[18] Metecan I H, Saglam M, Yanik J, et al. Effect of Pyrite Catalyst on the Hydroliquefaction of Goynuk (Turkey) Oil Shale in the Presence of Toluene[J]. Fuel, 1999, 78(5):619-622.
[19] Tiikma L, Johannes I, Luik H, et al. Thermal Dissolution of Estonian Oil Shale[J]. Journal of Analytical & Applied Pyrolysis, 2009, 85(1):502-507.
[20] Jiang Haifeng, Song Lihua, Cheng Zhiqiang, et al. Influence of Pyrolysis Condition and Transition Metal Salt on the Product Yield and Characterization via Huadian Oil Shale Pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2015, 112(1):230-236.
[21] Pulushev D A, Rossa J R H. Catalysis for Conversion of Biomass to Fuels via Pyroly is and Gasification[J]. Catalysis Today, 2011, 171:1-13.
[22] Espitalie J, Madec M, Tissot B. Role of Mineral Matrix in Kerogen Pyrolysis:Influence on Petroleum Generation and Migration[J]. AAPG Bull, 1980, 64(1):59-66.
[23] Wei Z, Moldowan J M, Paytan A. Diamondoids and Molecular Biomarkers Generated from Modern Sediments in the Absence and Presence of Minerals During Hydrous Pyrolysis[J]. Organic Geochemistry, 2006, 37(8):891-911.
[24] ASTM D4749-1987(2012) Standard Test Method for Performing the Sieve Analysis of Coal and Designating Coal Size[S/OL].[2012-05-10]. http://www.zbgb.org/48/StandardDetail2310510.htm.
[25] GB 474-2008煤样的制备方法[S]. 北京:中国标准出版社,2008. GB 474-2008 Method for Preparation of Coal Sample[S]. Beijing:Standards Press of China, 2008.
[26] Kok M V. Effect of Clay on Crude Oil Combustion by Thermal Analysis Techniques[J]. Journal of Thermal Analysis Calorimetry, 2006, 84(2):361-366.
[27] Coats A W, Redfern J P. Kinetic Parameters from Thermogravimetric Data[J]. Nature, 1964, 201:68-69.
[28] Bolonkin A, Friedlander J, Neumann S, et al. Innovative Unconventional Oil Extraction Technologies[J]. Fuel Processing Technology, 2014, 124(10):228-242.
[29] 刘德勋,王红岩,郑德温,等. 世界油页岩原位开采技术进展[J]. 天然气工业,2009,29(5):128-132. Liu Dexun, Wang Hongyan, Zheng Dewen, et al. World Progress of Oil Shale In-Situ Exploitation Methods[J]. Natural Gas Industry, 2009, 29(5):128-132.
[30] Bhargava S, Awaja F, Subasinghe N D, et al. Characterisation of Some Australian Oil Shale Using Thermal, X-Ray and IR Techniques[J]. Fuel, 2005, 84(6):707-715.
[31] Adams M J, Awaja F, Bhargava S, et al. Prediction of Oil Yield from Oil Shale Minerals Using Diffuse Reflectance Infrared Fourier Transform Spectroscopy[J]. Fuel, 2005, 84(14):1986-1991.
[32] Wlliams D J, Akira S. Clay Minerals and Petroleum-Forming Reactions During Burial and Diagenesis[J]. AAPG Bull1, 1972, 56(11):2160-2167.
[33] Wlliams D J. Clay Mineral Catalysis and Petroleum Generation[J]. Annual Review of Earth & Planetary Sciences, 1979, 7(1):183-198.
[1] 马中良, 郑伦举, 赵中熙. 不同边界条件对油页岩原位转化开采的影响及启示[J]. 吉林大学学报(地球科学版), 2017, 47(2): 431-441.
[2] 杨梅, 孙景贵, 王忠禹, 赵世峰, 刘晨, 冯洋洋, 任泽宁. 大兴安岭西坡甲乌拉铜银铅锌矿床富碱花岗斑岩的成因及其地质意义:锆石U-Pb定年和地球化学特征[J]. 吉林大学学报(地球科学版), 2017, 47(2): 477-496.
[3] 张鑫鑫, 彭枧明, 孙铭泽, 吴冬宇. 基于CFD的高能射流式液动冲击器活塞与缸体密封特性研究[J]. 吉林大学学报(地球科学版), 2017, 47(2): 534-541.
[4] 刘招君, 孙平昌, 柳蓉, 孟庆涛, 胡菲. 敦密断裂带盆地群油页岩特征及成矿差异分析[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1090-1099.
[5] 杜佰伟, 谢尚克, 董宇, 彭清华, 郑博. 伦坡拉盆地渐新统丁青湖组油页岩特征及其地质意义[J]. 吉林大学学报(地球科学版), 2016, 46(3): 671-680.
[6] 温志良, 姜福平, 钟长林, 姜雪飞, 王果谦, 齐岩. 松辽盆地东南隆起超大型油页岩矿床特征及成因[J]. 吉林大学学报(地球科学版), 2016, 46(3): 681-691.
[7] 孙友宏, 邓孙华, 王洪艳. 国际油页岩开发技术与研究进展记第33届国际油页岩会议[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1052-1059.
[8] 郑玉龙, 陈春瑞, 王佰长, 王占国, 刘胜英, 吴相梅. 松辽盆地北部油页岩资源潜力评价[J]. 吉林大学学报(地球科学版), 2015, 45(3): 683-690.
[9] 孙耀庭, 徐守余, 张世奇, 徐昊清, 郭丽丽. 山东昌乐凹陷油页岩地球化学特征及成因探讨[J]. 吉林大学学报(地球科学版), 2015, 45(3): 736-742.
[10] 宋维民, 庞雪娇, 付俊彧, 陶楠, 杨佳林, 杜继宇, 吴桐. 内蒙古科尔沁右翼中旗碱长花岗岩锆石U-Pb年代学、岩石地球化学及其动力学意义[J]. 吉林大学学报(地球科学版), 2015, 45(3): 847-859.
[11] 闫佰忠, 肖长来, 梁秀娟, 马喆, 危润初, 吴世利. 靖宇县玄武岩区矿泉水特征组分H2SiO3成因实验——以王大山泉为例[J]. 吉林大学学报(地球科学版), 2015, 45(3): 892-898.
[12] 谢尚克,杜佰伟,王剑,彭清华,郑博. 西藏伦坡拉盆地油页岩特征及分布规律[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1760-1767.
[13] 苏金宝,董树文,张岳桥,李勇,陈宣华, 崔建军,张交东. 川黔湘构造带构造样式及深部动力学制约[J]. 吉林大学学报(地球科学版), 2014, 44(2): 490-506.
[14] 韩世炯,孙景贵,邢树文,张增杰,柴鹏,杨帆,邱殿明. 中国东北部陆缘内生金矿床成因类型、成矿时代及地球动力学背景[J]. 吉林大学学报(地球科学版), 2013, 43(3): 716-733.
[15] 孟庆涛,刘招君,胡菲,孙平昌,柳蓉,周人杰,甄甄. 桦甸盆地始新统油页岩稀土元素地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2013, 43(2): 390-399.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李锦轶, 张进, 杨天南, 李亚萍, 孙桂华, 朱志新, 王励嘉. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J]. J4, 2009, 39(4): 584 -605 .
[2] 高翔, 刘志宏, 聂志阳, 姚勇, 贾卧, 王超, 宋健. 松辽盆地大庆长垣形成时间的厘定及其地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(1): 74 -83 .
[3] 王朝阳, 孟恩, 李壮, 李艳广, 靳梦琪. 吉东南新太古代晚期片麻岩类的时代、成因及其对早期地壳形成演化的制约[J]. 吉林大学学报(地球科学版), 2018, 48(3): 587 -625 .
[4] 宋明春, 李杰, 李世勇, 丁正江, 谭现锋, 张照录, 王世进. 鲁东晚中生代热隆-伸展构造及其动力学背景[J]. 吉林大学学报(地球科学版), 2018, 48(4): 941 -964 .
[5] 陈爱民. 澳大利亚Bonaparte盆地WA-406-P区块油气成藏条件及控制因素[J]. 吉林大学学报(地球科学版), 2018, 48(4): 965 -980 .
[6] 王玉霞, 周立发, 焦尊生, 尚庆华, 黄生旺. 鄂尔多斯盆地陕北地区延长组致密砂岩储层敏感性评价[J]. 吉林大学学报(地球科学版), 2018, 48(4): 981 -990 .
[7] 林敉若, 操应长, 葸克来, 王健, 陈洪, 吴俊军. 阜康凹陷东部斜坡带二叠系储层特征及控制因素[J]. 吉林大学学报(地球科学版), 2018, 48(4): 991 -1007 .
[8] 牟敦山, 付广, 陈雪晴. 南堡1号构造馆三段断盖配置油气渗漏部位及其控藏作用[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1008 -1017 .
[9] 赵谦平, 张丽霞, 尹锦涛, 俞雨溪, 姜呈馥, 王晖, 高潮. 含粉砂质层页岩储层孔隙结构和物性特征:以张家滩陆相页岩为例[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1018 -1029 .
[10] 龚跃华, 杨胜雄, 王宏斌, 梁金强, 梁劲. 琼东南盆地天然气水合物成矿远景[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1030 -1042 .