吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (6): 1831-1837.doi: 10.13278/j.cnki.jjuese.20170081

• 地质工程与环境工程 • 上一篇    

超声强化零价铁活化过硫酸盐降解地下水中二恶烷

刘娜, 丁吉阳, 于庆民, 张思达, 赵宏君, 吕春欣   

  1. 地下水资源与环境教育部重点实验室(吉林大学)/吉林大学新能源与环境学院, 长春 130021
  • 收稿日期:2017-06-01 发布日期:2018-11-26
  • 作者简介:刘娜(1977-),女,教授,博士生导师,主要从事污染环境修复方面的研究,E-mail:liuna@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41572217)

Degradation of 1,4-Dioxane in Groundwater by Ultrasound Enhanced ZVI-Activated Persulfate Oxidation Process

Liu Na, Ding Jiyang, Yu Qingmin, Zhang Sida, Zhao Hongjun, Lü Chunxin   

  1. Key Laboratory of Groundwater Resources and Environment(Jilin University), Ministry of Education/College of New Energy and Environment, Jilin University, Changchun 130021, China
  • Received:2017-06-01 Published:2018-11-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41572217)

摘要: 本文采用超声强化零价铁活化过硫酸盐氧化降解地下水中的二恶烷污染物。主要探讨了零价铁添加量、超声强化、不同过硫酸盐用量及地下水中不同碳酸根浓度等对二恶烷降解效果的影响,并对零价铁进行了表征分析。结果表明:超声能够促进硫酸根自由基和Fe2+的产生,提高二恶烷的降解率;零价铁添加量和过硫酸盐浓度的增加均能促进二恶烷的降解,但零价铁相对过硫酸盐过多时将降低最终降解率;地下水中的碳酸根会消耗硫酸根自由基,因此碳酸根浓度越高,二恶烷降解率越低。超声强化零价铁活化过硫酸盐氧化法能够有效降解二恶烷,并具有应用于处理地下水中二恶烷的潜力。

关键词: 零价铁, 过硫酸盐, 二恶烷, 超声, 地下水

Abstract: Ultrasound enhanced zero-valent iron (ZVI) activated persulfate process to degrade 1,4-dioxane in groundwater was studied, and the effects of ultrasound, ZVI dosage, concentration of persulfate and carbonate ions were also investigated. ZVI was characterized by X-ray photo electron spectroscopy (XPS) and scanning electron microscope (SEM). The results show that ultrasound can accelerate the generation of sulfate radicals and Fe2+, and enhance the degradation of 1,4-dioxane. The degradation efficiency can be increased through increasing ZVI dosage and persulfate concentration;however, the final degradation efficiency of 1,4-dioxane decreases when Fe0 dosage is much more than persulfate. The presence of carbonate ions in groundwater reduces the concentration of sulfate radicals, thus the efficiency of 1,4-dioxane degradation decreases with the increase of carbonate concentration. In conclusion, ultrasound enhanced ZVI-activated persulfate process can effectively degrade 1,4-dioxane, is a promising method in the treatment of 1,4-dioxane in groundwater.

Key words: zero-valent iron, persulfate, 1,4-dioxane, ultrasound, groundwater

中图分类号: 

  • X703
[1] Mohr T K, Stickney J A, Diguiseppi W H. Environ-mental Investigation and Remediation:1,4-Dioxane and Other Solvent Stabilizers[M]. New York:CRC Press, Taylor & Francis Group, 2016.
[2] Otto M, Nagaraja S. Treatment Technologies for 1, 4-Dioxane:Fundamentals and Field Applications[J]. Remediation Journal, 2007, 17(3):81-88.
[3] Zenker M J, Borden R C, Barlaz M A. Occurrence and Treatment of 1, 4-Dioxane in Aqueous Environments[J]. Environmental Engineering Science, 2003, 20(5):423-432.
[4] Adamson D T, De Blanc P C, Farhat S K, et al. Implications of Matrix Diffusion on 1, 4-Dioxane Persistence at Contaminated Groundwater Sites[J]. Science of the Total Environment, 2016, 562:98-107.
[5] Adams C D, Scanlan P A, Secrist N D. Oxidation and Biodegrability Enhancement of 1, 4-Dioxane Using Hydrogen Peroxide and Ozone[J]. Environmental Science & Technology, 1994, 28(11):1812-1818.
[6] Lesage S, Jackson R E, Priddle M W, et al. Occu-rrence and Fate of Organic Solvent Residues in Anoxic Groundwater at the Gloucester Landfill, Canada[J]. Environmental Science & Technology, 1990, 24(4):559-566.
[7] Lee I S, Sim W J, Kim C W, et al. Characteristic Occurrence Patterns of Micropollutants andTheir Removal Efficiencies in Industrial Wastewater Treatment Plants[J]. Journal of Environmental Monitoring, 2011, 13(2):391-397.
[8] Barndok H, Hermosilla D, Cortijo L, et al. Elec-trooxidation of Industrial Wastewater Containing 1, 4-Dioxane in the Presence of Different Salts[J]. Environmental Science and Pollution Research, 2014, 21(8):5701-5712.
[9] Suh J H, Mohseni M.A Study on the Relationship Between Biodegradability Enhancement and Oxidation of 1, 4-Oioxane Using Ozone and Hydrogen Peroxide[J]. Water Research, 2004, 38(10):2596-2604.
[10] Maurino V, Calza P, Minero C, et al. Light-Assisted 1, 4-Dioxane Degradation[J]. Chemosphere, 1997, 35(11):2675-2688.
[11] Hori H, Yamamoto A, Hayakawa E, et al. Efficient Decomposition of Environmentally Persistent Perfluoro Carboxylic Acids by Use of Persulfate as a Photochemical Oxidant[J]. Environmental Science & Technology, 2005, 39(7):2383-2388.
[12] Criquet J, Leitner N K V. Degradation of Acetic Acid with Sulfate Radical Generated by Persulfate Ions Photolysis[J]. Chemosphere, 2009, 77(2):194-200.
[13] Rodriguez S, VasquezA L, Costa D, et al. Oxidation of Orange G by Persulfate Activated by Fe (Ⅱ), Fe (Ⅲ) and Zero Valent Iron (ZVI)[J]. Chemosphere, 2014, 101:86-92.
[14] Jafari A J, Kakavandi B, Jaafarzaneh N, et al. Fen-ton-Like Catalytic Oxidation of Tetracycline by AC@Fe3O4 as a Heterogeneous Persulfate Activator:Adsorption and Degradation Studies[J]. Journal of Industrial and Engineering Chemistry, 2017, 45:323-333.
[15] Zhang Y, Tran H P, Du X, et al. Efficient Pyrite Activating Persulfate Process for Degradation of p-Chloroaniline in Aqueous Systems:A Mechanistic Study[J]. Chemical Engineering Journal, 2017, 308:1112-1119.
[16] Liang C, Bruell C J, Marley M C, et al. Persulfate Oxidation for in Situ Remediation of TCE:I:Activated by Ferrous Ion with and Without a Persulfate-Thiosulfate Redox Couple[J]. Chemosphere, 2004, 55(9):1213-1223.
[17] Rao Y, Qu L, Yang H, et al. Degradation of Car-bamazepine by Fe (Ⅱ)-Activated Persulfate Process[J]. Journal of Hazardous Materials, 2014, 268:23-32.
[18] 刘娜,王柳,邱华,等. 生物炭催化过硫酸盐脱色偶氮染料金橙Ⅱ[J]. 吉林大学学报(地球科学版),2014, 44(6):2000-2009. Liu Na, Wang Liu, Qiu Hua, et al. Biochar-Catalyzed Persulfate Decolorization of Azo Dye Gold Orange Ⅱ[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(6):2000-2009.
[19] Hussain I, Zhang Y, Huang S, et al. Degradation of p-Chloroaniline by Persulfate Activated with Zero-Valent Iron[J]. Chemical Engineering Journal, 2012, 203:269-276.
[20] Santos-Juanes L, Einschlag F G, Amat A, et al. Combining ZVI Reduction with Photo-Fenton Process for the Removal of Persistent Pollutants[J]. Chemical Engineering Journal, 2017, 310:484-490.
[21] Weng C H, Lin Y T, Yuan H M. Rapid Decoloration of Reactive Black 5 by an Advanced Fenton Process in Conjunction with Ultrasound[J]. Separation and Purification Technology, 2013, 117:75-82.
[22] Du J, Bao J, Fu X, et al. Mesoporous Sulfur-Modified Iron Oxide as an Effective Fenton-Like Catalyst for Degradation of Bisphenol A[J]. Applied Catalysis B:Environmental, 2016, 184:132-141.
[23] Son H S, Im J K, Zoh K D. A Fenton-Like Degradation Mechanism for 1, 4-Dioxane Using Zero-Valent Iron (Fe 0) and UV Light[J]. Water Research, 2009, 43(5):1457-1463.
[24] Shin J, Lee Y-C, Ahn Y, et al. 1, 4-Dioxane Degradation by Oxidation and Sonication in the Presence of Different-Sized ZVI in Open-Air System[J]. Desalination and Water Treatment, 2012, 50(1/2/3):102-114.
[25] Fu F, Lu J, Cheng Z, et al. Removal of Selenite by Zero-Valent Iron Combined with Ultrasound:Se (Ⅳ) Concentration Changes, Se(Ⅵ) Generation, and Reaction Mechanism[J]. Ultrasonics Sonochemistry, 2016, 29:328-336.
[26] Wei X, Gao N, Li C, et al. Zero-valent Iron (ZVI) Activation of Persulfate (PS) for Oxidation of Bentazon in Water[J]. Chemical Engineering Journal, 2016, 285:660-670.
[27] Tan C, Gao N, Chu W, et al. Degradation of Diuron by Persulfate Activated with Ferrous Ion[J]. Separation and Purification Technology, 2012, 95:44-48.
[28] Asghar A, Raman A A A, Daud W M A W. Advanced Oxidation Processes for In-Situ Production of Hydrogen Peroxide/Hydroxyl Radical for Textile Wastewater Treatment:A Review[J]. Journal of Cleaner Production, 2015, 87:826-838.
[29] Keen O S, Mckay G, Mezyk S P, et al. Identifying the Factors that Influence the Reactivity of Effluent Organic Matter with Hydroxyl Radicals[J]. Water Research, 2014, 50:408-419.
[1] 洪梅, 韩旭, 王蔷, 刘璐, 史玉玺. 硫化纳米铁对模拟地下水中Cr(Ⅵ)的去除效果及影响因素[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1821-1830.
[2] 陈雄, 张岩, 王艺伟, 叶淑君, 吴吉春, 于军, 龚绪龙. 苏北沿海三市三维地下水流数值模拟[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1434-1450.
[3] 张艳, 徐斌, 刘秀花. 陕西省泾惠渠灌区地下水污染与人体健康风险评价[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1451-1464.
[4] 丁一凡, 郝光, 刘本华, 张子明, 杨鑫鑫, 刘明柱. 某四氯化碳污染场地自然恢复的地球化学特征[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1465-1472.
[5] 董军, 徐暖, 刘同喆, 管锐, 邓俊巍. 乳化植物油强化土著微生物修复中高浓度Cr(Ⅵ)污染地下水[J]. 吉林大学学报(地球科学版), 2018, 48(1): 234-240.
[6] 黄星, 路莹, 刘肖, 段晓飞, 朱利民. 地下水位抬升对人工回灌中悬浮物堵塞的影响[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1810-1818.
[7] 尹崧宇, 赵大军, 周宇, 赵博. 超声波振动下非均匀岩石损伤过程数值模拟与试验[J]. 吉林大学学报(地球科学版), 2017, 47(2): 526-533.
[8] 董维红, 孟莹, 王雨山, 武显仓, 吕颖, 赵辉. 三江平原富锦地区浅层地下水水化学特征及其形成作用[J]. 吉林大学学报(地球科学版), 2017, 47(2): 542-553.
[9] 付延玲, 骆祖江, 廖翔, 张建忙. 高层建筑引发地面沉降模拟预测三维流固全耦合模型[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1781-1789.
[10] 刘国庆, 吴时强, 范子武, 周志芳, 谢忱, 乌景秀, 柳杨. 回灌与回扬物理过程的解析推导及灌压变化规律[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1799-1807.
[11] 刘海龙, 马小龙, 袁欣, 穆环玲, 冷冰原, 洪梅. 基于多元回归分析的铬污染地下水风险评价方法[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1823-1829.
[12] 袁晓婕, 郭占荣, 黄磊, 章斌, 马志勇, 刘洁. 用镭-226示踪胶州湾的海底地下水排泄[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1490-1500.
[13] 杨悦锁, 张戈, 宋晓明, 温玉娟, 张文卿. 地下水和土壤环境中雌激素运移和归宿的研究进展[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1176-1190.
[14] 董德明, 曹珍, 闫征楚, 花修艺, 朱磊, 徐阳, 郭志勇, 梁大鹏. 臭氧-超声联用处理聚乙烯醇废水[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1191-1198.
[15] 陈盟, 吴勇, 高东东, 常鸣. 广汉市平原区浅层地下水化学演化及其控制因素[J]. 吉林大学学报(地球科学版), 2016, 46(3): 831-843.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!