吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (6): 1783-1788.doi: 10.13278/j.cnki.jjuese.20200055

• 地质工程与环境工程 • 上一篇    下一篇

渗流应力耦合作用下顺倾向层状边坡各向异性渗流特征数值模拟

师文豪1,2, 杨天鸿2   

  1. 1. 苏州科技大学土木工程学院, 江苏 苏州 215011;
    2. 东北大学资源与土木工程学院, 沈阳 110819
  • 收稿日期:2020-03-05 出版日期:2021-11-26 发布日期:2021-11-24
  • 作者简介:师文豪(1988-),男,讲师,主要从事岩石渗流力学方面的研究,E-mail:shiwenhaoneu@126.com
  • 基金资助:
    国家重点研发计划项目(2016YFC0801602);江苏省自然科学基金项目(BK20200993)

Numerical Simulation on Anisotropic Seepage Characteristics in Dip Layered Rock Slope with Interaction of Seepage and Stress

Shi Wenhao1,2, Yang Tianhong2   

  1. 1. School of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215011, Jiangsu, China;
    2. School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
  • Received:2020-03-05 Online:2021-11-26 Published:2021-11-24
  • Supported by:
    Supported by the National Key R&D Program of China (2016YFC0801602) and the Natural Science Foundation of Jiangsu Province (BK20200993)

摘要: 渗流场与应力场耦合作用下边坡渗流规律对研究边坡稳定性至关重要,应用基于等效连续介质模型和Louis经验公式建立的各向异性岩体渗流应力耦合模型,对顺倾向层状边坡的各向异性渗流规律进行了模拟分析。研究表明:顺倾向层状边坡中水位降深随结构面倾角θ的增大先升高、后降低,呈现两头低、中间高的形态,且越靠近溢出点,结构面倾角对水位降深影响越大;θ约为42°时水位降深最大,潜水面最低,同时渗透各向异性系数达到最大值;顺倾向边坡岩层产状一定时,随着埋深的增加,岩体渗透各向异性系数逐渐减小,裂隙控渗特征由显著到逐渐变弱,表现出向各向同性渗流过渡的趋势。

关键词: 层状边坡, 渗透各向异性系数, 渗流, 渗流应力耦合, 数值模拟

Abstract: Slope seepage law with interaction of seepage and stress is very important for slope stability analysis. The anisotropic seepage-stress coupled model established based on the equivalent continuum model and Louis empirical formula is applied to the numerical simulation of seepage in dip layered rock slope. The numerical simulation results show that for the dip layered rock slope, the value of drawdown first increases then decreases with the dip angle of structural plane θ. The outline is like a shoulder, low on both sides and high in the middle. In addition, the closer to the spill points of water is, the greater the influence on the drawdown value of structural plane dip angle; When θ is about 42°, the drawdown reaches its maximum, meanwhile, the anisotropic ratio of permeability also reaches its maximum. When the attitude of strata of dip layered rock slope is given, the anisotropic ratio of permeability decreases with the increase of the buried depth, and the seepage field controlled by the layered structural planes becomes weak gradually, showing a trend of transition to isotropic seepage.

Key words: layered slope, anisotropic ratio of permeability, seepage, coupled seepage and stress, numerical simulation

中图分类号: 

  • TU45
[1] 孙广忠. 中国典型滑坡[M]. 北京:科学出版社,1988. Sun Guangzhong. Typical Landslides in China[M]. Beijing:Science Press,1988.
[2] Hoek E,Bray J W. Rock Slope Engineering[M]. London:E & FN Spon,1981.
[3] Christensen S,Rasmussen K R,Moller K. Prediction of Regional Groundwater Flow to Streams[J]. Groundwater,1998,36(2):53-66.
[4] Luppi L,Rinaldi M,Teruggi L,et al. Monitoring and Numerical Modeling of Riverbank Erosion Processes:A Case Study Along the Cecina River (Central Italy)[J]. Earth Surface Processes and Landforms,2009,34(4):530-546.
[5] 陈永珍,吴斌,杨帆,等. 充气截排水渗流与变形耦合数值模拟[J]. 吉林大学学报(地球科学版),2019,49(2):485-492. Chen Yongzhen,Wu Bin,Yang Fan,et al. Coupled Numerical Simulation of Seepage and Deformation of Intercepting and Drainaging Water with Compressed Air[J]. Journal of Jilin University (Earth Science Edition),2019,49(2):485-492.
[6] Francois B,Tacher L,Bonnard C H,et al. Numerical Modeling of the Hydrogeological and Geomechanical Behaviour of a Large Slope Movement:The Triesenberg Landslide (Liechtenstein)[J]. Canadian Geotechnical Journal,2007,44(7):840-857.
[7] Tacher L,Bonnard C H,Laloui L,et al. Modeling the Behaviour of a Large Landslide with Respect to Hydrogeological and Geomechanical Parameter Heterogeneity[J]. Landslides Journal,2005,2(1):3-14.
[8] Gonzaga G G,Leite M H,Corthésy R. Determination of Anisotropic Deformability Parameters from a Single Standard Rock Specimen[J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(8):1420-1438.
[9] Jourde H,Fenart P,Vinches M,et al. Relationship Between the Geometrical and Structural Properties of Layered Fractured Rocks and Their Effective Permeability Tensor:A Simulation Study[J]. Journal of Hydrology,2007,337(1/2):117-132.
[10] 曹长鑫,孙红月. 黄土地区边坡虹吸排水孔间距优化[J].吉林大学学报(地球科学版),2021,51(4):1152-1159. Cao Changxin,Sun Hongyue. Optimization of Siphon Drainage Hole Spacing on Slop in Loess Region[J]. Journal of Jilin University (Earth Science Edition),2021,51(4):1152-1159.
[11] Tian Kaiming, Wan Li, Tian Jinping. Anisotropic Variation Law of Rock Permeability with the Burial Depth of Limestone[J]. Acta Geologica Sinica,2003,77(1):125-128.
[12] 周玉新,周志芳,王锦国,等. 采场岩体边坡渗流的裂隙控渗特征[J]. 金属矿山,2005(4):53-55. Zhou Yuxin,Zhou Zhifang,Wang Jinguo,et al. Characteristics Fracture Controlled Seepage of Mine Rock Slope Seepage[J]. Metal Mine,2005(4):53-55.
[13] 师文豪,杨天鸿,于庆磊,等. 层状边坡各向异性岩体渗流-应力耦合模型及工程应用[J]. 岩土力学,2015,36(8):2352-2360. Shi Wenhao,Yang Tianhong,Yu Qinglei,et al. Seepage-Stress Coupling Model of Anisotropic Rock Mass of Stratified Slope and Its Engineering Application[J]. Rock and Soil Mechanics,2015,36(8):2352-2360.
[14] Cho J W,Kim H,Jeon S,et al. Deformation and Strength Anisotropy of Asan Gneiss, Boryeong Shale,and Yeoncheon Schist[J]. International Journal of Rock Mechanical & Mining Sciences,2012,50(1):158-169.
[15] Biot M A. Gernaral Theory of Three-Dimensional Consolidation[J]. Journal of Applied Physics,1941,12(3):155-164.
[16] 张金才,张玉卓. 应力对裂隙岩体渗流影响的研究[J]. 岩土工程学报,1988,20(2):19-22. Zhang Jincai,Zhang Yuzhuo. The Effect of Stress on the Permeability of Fractured Rock Masses[J]. Chinese Journal of Geotechnical Engineering,1988,20(2):19-22.
[17] 师文豪,杨天鸿,王培涛,等. 露天矿边坡岩体稳定性各向异性分析方法及工程应用[J]. 岩土工程学报,2014,36(10):1924-1933. Shi Wenhao,Yang Tianhong,Wang Peitao,et al. Anisotropic Analysis Method for Stability of Open-Pit Slope Rock Mass and Its Application[J]. Chinese Journal of Geotechnical Engineering,2014,36(10):1924-1933.
[18] Sun Jianping,Zhao Zhiye. Effects of Anisotropic Permeability of Fractured Rock Masses on Underground Oil Storage Caverns[J]. Tunnelling and Underground Space Technology,2010,25(5):629-637.
[1] 余莉, 张钰, 王维玉, 韩子豪, 赵拓. 基坑装配式可回收支护和桩锚支护结构的受力与变形分析[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1789-1800.
[2] 蔡晓光, 徐洪路, 李思汉, 张少秋. 地震作用下返包式加筋土挡墙数值模拟[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1416-1426.
[3] 李立云, 王子英, 王晓静, 杜修力. 近铁路基坑通风井段变形特征及其机制分析[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1441-1451.
[4] 魏家斌, 王卫东, 吴江斌. 免共振沉桩过程对地表振动影响的FLAC3D数值模拟[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1514-1522.
[5] 李一赫, 王殿举, 于法浩, 刘志强. 下刚果盆地白垩系盐构造的形成演化[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1628-1638.
[6] 吕雅馨, 骆祖江, 徐成华. 南京汤山地区地热水资源评价[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1844-1853.
[7] 盛冲, 许鹤华, 张云帆, 张文涛, 任自强. 钙质砂水理性质及对岛礁淡水透镜体形成的影响[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1127-1138.
[8] 段云星, 杨浩. 增强型地热系统采热性能影响因素分析[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1161-1172.
[9] 王常明, 鲁鋆, 马栋和. 土石围堰中混凝土防渗墙设计方案的数值优化[J]. 吉林大学学报(地球科学版), 2020, 50(3): 857-865.
[10] 孙超, 许成杰. 基坑开挖对周边环境的影响[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1698-1705.
[11] 王常明, 李桐, 田书文, 李硕. 基于LAHARZ的泥石流堆积范围预测模型的建立及应用[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1672-1679.
[12] 孙可明, 张宇. 缝网间距对高温岩体储留层温度影响规律模拟[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1723-1731.
[13] 常晓军, 葛伟亚, 于洋, 赵宇, 叶龙珍, 张泰丽, 魏振磊. 福建省永泰县东门旗山滑坡诱发机理与防治措施[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1063-1072.
[14] 杨新乐, 秘旭晴, 张永利, 李惟慷, 戴文智, 王亚鹏, 苏畅. 注热联合井群开采煤层气运移采出规律数值模拟[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1100-1108.
[15] 尹崧宇, 赵大军. 超声波振动下不同应力条件对岩石强度影响的试验[J]. 吉林大学学报(地球科学版), 2019, 49(3): 755-761.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[2] 李 秉 成. 陕西富平全新世古气候的初步研究[J]. J4, 2005, 35(03): 291 -0295 .
[3] 和钟铧,杨德明,王天武,郑常青. 冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年[J]. J4, 2005, 35(03): 302 -0307 .
[4] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[5] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[6] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[7] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[8] 李涛, 吴胜军,蔡述明,薛怀平,YASUNORI Nakayama. 涨渡湖通江前后调蓄能力模拟分析[J]. J4, 2005, 35(03): 351 -0355 .
[9] 旷理雄,郭建华,梅廉夫,童小兰,杨丽. 从油气勘探的角度论博格达山的隆升[J]. J4, 2005, 35(03): 346 -0350 .
[10] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .