吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (2): 445-452.doi: 10.13229/j.cnki.jdxbgxb.20220341
• 交通运输工程·土木工程 • 上一篇
陈凯祥1,2(),张鹤年3,4(),席培胜3,王长丹1,2,余涛5,张炳锌6
Kai-xiang CHEN1,2(),He-nian ZHANG3,4(),Pei-sheng XI3,Chang-dan WANG1,2,Tao YU5,Bing-xin ZHANG6
摘要:
碳化砌块是基于活性氧化镁水泥碳化技术研发的新型砌块,即先采用活性氧化镁水泥与骨料进行搅拌,然后利用CO2进行碳化,以达到提高强度目的。通过室内试验,开展了无侧限抗压强度、X射线衍射、电镜扫描和热重分析试验,研究了碳化湿度对碳化砌块强度和碳化产物的影响,并进行耐久性测试。结果表明:碳化砌块强度明显高于普通水泥砌块,在碳化养护三天,碳化砌块能达到70%~80%强度,碳化湿度为60%的砌块强度最佳;碳化砌块具有很强的耐久性能,碳化湿度为60%碳化砌块耐久性能明显高于40%和80%的碳化砌块;活性氧化镁的碳化产物是碳酸镁石、水菱镁石和球碳镁石,碳化湿度为60%的碳化砌块内部碳化产物最密集。
中图分类号:
1 | 梁丰. 砌体在建筑更新中的命运与前景[D].天津:天津大学建筑学院,2010. |
Liang Feng. Fate and future of masonry in architecture renewal[D]. Tianjing: School of Architecture, Tianjin University, 2010. | |
2 | 周文杰. 新型再生混凝土空心砌块砌体力学性能研究[D].西安:长安大学建筑工程学院,2021. |
Zhou Wen-jie. Study on masonry properties of new recycled concrete hollow block[D]. Xian: School of Architectural Engineering, Chang'an University, 2021. | |
3 | 田伟,郭学东,尹新生. 混凝土空心砌块墙梁墙身斜截面抗裂度的理论与试验[J]. 吉林大学学报:工学版, 2011, 41 (): 189-193. |
Tian Wei, Guo Xue-dong, Yin Xin-sheng. Theoretical and experimental research on oblique cross-section cracking resistance of wall-beam by concrete hollow block[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41 (Sup.2): 189-193. | |
4 | 孙绪杰,潘景龙,郑文忠. 玻璃纤维增强聚合物混凝土小型空心砌块复合墙片的抗震性能[J]. 吉林大学学报:工学版, 2008, 38(5): 1054-1059. |
Sun Xu-jie, Pan Jing-long, Zheng Wen-zhong. Ant-iseismic behavior of composite GFRP-concrete small hollow block wall[J]. Journal of Jilin University (Engineering and Technology Edition), 2008, 38(5): 1054-1059. | |
5 | Yi Yao-lin, Martin L, Unluer C, et al. Carbonating magnesia for soil stabilization[J]. Canadian Geotechnical Journal, 2013, 50(8):899-905. |
6 | Higgins D D. GGBS and sustainability[J]. Construction Materials, 2007, 160: 99-101. |
7 | Harrison J. New cements based on the addition of reactive magnesia to Portland cement with or without added pozzolan[C]∥Proceedings of the CIA Conference: Concrete in the Third Millennium, CIA, Brisbane, Australia, 2003. |
8 | Harrison J. Reactive magnesium oxide cements[P]. United States Patent, 2003. |
9 | 刘松玉,李晨.氧化镁活性对碳化固化效果影响研究[J].岩土工程学报,2015,37(1):148-155. |
Liu Song-yu, Li Chen. Influence of MgO activity on stabilization efficiency of carbonated mixing method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 148-155. | |
10 | Martin L, Vandeperre L J, Al-Tabbaa A. Influence of carbonation on the properties of reactive magnesia cement-based pressed masonry units[J]. Advances in Cement Research, 2007, 19(1): 1-12. |
11 | Jin F, Gu K, Abdollahzadeh A, et al. Effects of different reactive MgOs on the hydration of MgO-activated GGBS paste[J]. Journal of Materials in Civil Engineering, 2015,27(7):1-9. |
12 | Jin F, Wang F, Al-Tabbaa A. Three-year performance of in-situ solidified/stabilised soil using novel MgO-bearing binders[J]. Chemosphere,2016, 144(10): 681-688. |
13 | 易耀林. 基于可持续发展的搅拌桩新技术与理论[D]. 南京:东南大学交通运输工程学院, 2013. |
Yi Yao-lin. Sustainable novel deep mixing methods and theory[D]. Nanjing: School of Transportation, Southeast University, 2013. | |
14 | Yi Y L, Martin L, Jin F, et al. Mechanism of reactive magnesia-ground granulated blastfurnace slag (GGBS) soil stabilization[J]. Canadian Geotechnical Journal, 2016, 53(5):773-782. |
15 | Yi Y L, Zheng X, Liu SY, et al. Comparison of reactive magnesia- and carbide slag-activated ground granulated blastfurnace slag and Portland cement for stabilisation of a natural soil[J]. Applied Clay Science,2016,111(7): 21-26. |
16 | 张鹤年,陈凯祥,席培胜. 基于活性氧化镁掺量的碳化砌块性能及机理研究[J]. 建筑材料学报,2017, 20(6):981-985. |
Zhang He-nian, Chen Kai-xiang, Xi Pei-sheng. Property and mechanism of carbonization blocks at different reactive MgO amounts[J]. Journal of Building Materials, 2017, 20(6): 981-985. | |
17 | Zhang H N, Shen C, Xi P S, et al. Study on effect of the activated magnesia carbonized building blocks based on the content of fly ash[J]. Construction and Building Materials, 2018, 185(10):609-616. |
18 | 左锋,叶奋,宋卿卿. RAP掺量对再生沥青混合料路用性能影响[J]. 吉林大学学报:工学版, 2020, 50 (4): 1403-1410. |
Zuo Feng, Ye Fen, Song Qing-qing. Influence of RAP content on road performance of recycled asphalt mixture[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(4): 1403-1410. | |
19 | Martin L, Al-Tabbaa A. Performance of magnesia cements in pressed masonry units with natural aggregates: production parameters optimization[J]. Construction and Building Materials, 2008, 22(8): 1789-1797. |
20 | 刘竞, 邓德华, 刘赞群. 养护措施和湿养护时间对掺与未掺矿渣混凝土性能的影响[J]. 硅酸盐学报, 2008, 36(7):11-17. |
Liu Jing, Deng De-hua, Liu Zan-qun. Effect of curing methods and wet curing duration on properties of plain and slag-cement concrete[J]. Journal of the Chinese Ceramic Society,2008, 36(7):11-17. | |
21 | Alizadeh R, Ghods P, Chini M, et al. Effect of curing conditions on the service life design of RC structures in the persian gulf region[J]. Journal of Materials in Civil Engineering, 2008, 20(1):1-9. |
22 | Steven H K, Beatrix K, William C P, 等. 混凝土设计与控制[M]. 重庆:重庆大学出版社, 2005. |
23 | 李艺,姬胜鹏. 冬期施工混杂纤维混凝土宏观性能及微观结构[J]. 吉林大学学报:工学版, 2019, 49 (3): 781-787. |
Li Yi, Ji Sheng-peng. Macro⁃properties and microstructure of hybrid fiber reinforced concrete in winter construction[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49 (3): 781-787. | |
24 | ,混凝土砌块和砖试验方法 [S]. |
25 | . 蒸压加气混凝土性能试验方法 [S]. |
26 | 梁春雨,郭有蒙,张利东,等. 季冻区多指标水泥稳定碎石性能评价及级配优选[J]. 吉林大学学报:工学版, 2020, 50(3): 998-1005. |
Liang Chun-yu, Guo You-meng, Zhang Li-dong,et al. Performance evaluation and gradation optimal selection of multi⁃index cement stabilized macadam in seasonal frozen area[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(3): 998-1005. |
[1] | 姜屏,周琳,毛天豪,袁俊平,王伟,李娜. 水泥改性废弃泥浆损伤模型及时间效应[J]. 吉林大学学报(工学版), 2022, 52(12): 2874-2882. |
[2] | 王毅红,田桥罗,兰官奇,姚圣法,张建雄,刘喜. 630 MPa高强钢筋混凝土大偏压柱受力性能试验[J]. 吉林大学学报(工学版), 2022, 52(11): 2626-2635. |
[3] | 汤东,韩宇彬,华伦,潘金冲,刘胜. 润滑油灰分对直喷汽油机颗粒捕集器性能影响[J]. 吉林大学学报(工学版), 2022, 52(11): 2501-2507. |
[4] | 刘寒冰,高鑫,宫亚峰,刘诗琪,李文俊. 表面处理对玄武岩纤维活性粉末混凝土力学性能的影响及断裂特性[J]. 吉林大学学报(工学版), 2021, 51(3): 936-945. |
[5] | 袁杰,陈歆,何虹霖,杨博,朱小骏. 微生物矿化作用下混凝土裂缝修复与性能补偿[J]. 吉林大学学报(工学版), 2020, 50(2): 641-647. |
[6] | 戴文亭,司泽华,王振,王琦. 剑麻纤维水泥加固土的路用性能试验[J]. 吉林大学学报(工学版), 2020, 50(2): 589-593. |
[7] | 何娟,程从密,杨毅男,张亚芳,钟明峰. 湿热养护时掺合料对玻纤增强水泥性能的影响[J]. 吉林大学学报(工学版), 2020, 50(2): 648-653. |
[8] | 宫亚峰, 申杨凡, 谭国金, 韩春鹏, 何钰龙. 不同孔隙率下纤维土无侧限抗压强度[J]. 吉林大学学报(工学版), 2018, 48(3): 712-719. |
[9] | 高小建, 孙博超, 叶焕, 王子龙. 矿物掺合料对自密实混凝土流变性能的影响[J]. 吉林大学学报(工学版), 2016, 46(2): 439-444. |
[10] | 苏迎社, 杨媛媛. 高温对建筑混凝土材料抗震抗压的作用及原理[J]. 吉林大学学报(工学版), 2015, 45(5): 1436-1442. |
[11] | 肖锐, 邓宗才, 兰明章, 申臣良. 不掺硅粉的活性粉末混凝土配合比试验[J]. 吉林大学学报(工学版), 2013, 43(03): 671-676. |
[12] | 孟松鹤, 高慧婷, 孙莉安, 史洪军. 硅灰-矿渣对聚丙烯纤维混凝土性能的影响[J]. 吉林大学学报(工学版), 2010, 40(增刊): 214-0217. |
|