吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (2): 589-593.doi: 10.13229/j.cnki.jdxbgxb20180660

• 交通运输工程·土木工程 • 上一篇    

剑麻纤维水泥加固土的路用性能试验

戴文亭(),司泽华,王振,王琦   

  1. 吉林大学 交通学院,长春 130022
  • 收稿日期:2018-06-22 出版日期:2020-03-01 发布日期:2020-03-08
  • 作者简介:戴文亭(1964-),男,教授,博士.研究方向:道路建筑材料.E-mail:daiwt@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51178204)

Test on road performance of soils stabilized by sisal fiber and ionic soil stabilizer with cement

Wen-ting DAI(),Ze-hua SI,Zhen WANG,Qi WANG   

  1. College of Transportation, Jilin University, Changchun 130022, China
  • Received:2018-06-22 Online:2020-03-01 Published:2020-03-08

摘要:

为研究剑麻纤维结合某离子型固化剂对长春地区典型粗粒土的固化效果,配制了纤维掺量为0.6%、纤维长度为1 cm、固化剂掺量为0.03%、水泥掺量为5%的剑麻纤维水泥加固土。对加固土的无侧限抗压强度、间接抗拉强度、冻稳定性和水稳定性等路用性能指标进行了系统的试验,得出剑麻纤维水泥加固土作为路面基层材料具有早期强度高,抗弯拉性能、冻稳定性能、水稳定性能好的结论,适合在长春及其气候、土质相似地区的道路工程中应用。

关键词: 道路工程, 剑麻纤维, 离子型固化剂, 路用性能, 无侧限抗压强度, 冻融循环

Abstract:

In order to investigate solidification effect to coarse-grained soil in Changchun by sisal fiber and ionic soil stabilizer with cement, Sisal fiber cement reinforced soil sample was prepared in which the fiber content is 0.6%, fiber length is 1 cm, stabilizer content is 0.03%, and cement content is 5%. The tests on the road performance indexes, such as the unconfined compressive strength, indirect tensile strength, frost stability, etc., are carried out systematically. Experimental results indicate that the soil stabilized by sisal fiber and ionic soil stabilizer with cement has high early stage strength, well flexure-tension resistant performance and well frost stability. Such sisal fiber cement reinforced soil is especially suitable for Changchun and any other regions where the climate and sorts of soil are similar.

Key words: road engineering, sisal fiber, ironic soil stabilizer, road performance, unconfined compressive strength, freeze-thaw cycles

中图分类号: 

  • U414

图1

击实试验曲线"

表1

无侧限抗压强度试验数据"

纤维掺量/%水泥掺量/%固化剂掺量/%龄期/d无侧限抗压强度/MPa
50.60.0372.080
50.60.03283.166
50.60.03903.800

图2

无侧限抗压强度增长趋势图"

表2

劈裂强度试验结果"

纤维掺量/%水泥掺量/%固化剂掺量/%龄期/d劈裂强度/MPa
50.60.0370.217
50.60.03280.276
50.60.03900.354

图3

劈裂强度增长趋势图"

表3

冻融循环试验结果"

养生龄期/d冻融次数检验强度/MPa冻后强度/MPa强度损失/%
2812.6932.40110.8
2832.6932.20118.3
2852.6932.12421.1

图4

不同冻融循环次数试件的无侧限抗压强度"

表4

水稳定性试验无侧限抗压强度结果"

养生龄期/d浸水天数/d检验强度/MPa抗压强度/MPa强度损失/%
712.1001.71618.3
732.1001.74816.8
752.1001.83712.5

图5

加固土浸水不同龄期后无侧限抗压强度对比示意图"

1 卢浩, 晏长根, 杨晓华, 等. 麦秆纤维加筋土的抗冲蚀性及其防护效果试验研究[J]. 铁道科学与工程学报, 2017, 14(10): 2138-2145.
Lu Hao, Yan Chang-gen, Yang Xiao-hua, et al. Experimental research on anti-eroding property and protection effect of reinforced soil with straw fibers[J]. Journal of Railway Science and Engineering, 2017, 14(10): 2138-2145.
2 Butt W A, Mir B A, Jha J N. Strength behavior of clayey soil reinforced with human hair as a natural fiber[J]. Geotechnical & Geological Engineering, 2016, 34(1): 411-417.
3 Babu G L S, Vasudevan A K, Haldar S. Numerical simulation of fiber-reinforced sand behavior[J]. Geotextiles & Geomembranes, 2008, 26(2): 181-188.
4 戴文亭, 陈瑶, 陈星. BS-100型土壤固化剂在季冻区的路用性能试验研究[J]. 岩土力学, 2008, 29(8): 2257-2261.
Dai Wen-ting, Chen Yao, Chen Xing. Test study on road performance of soils stabilized by BS-100 model stabilizer in seasonally frozen region[J]. Rock and Soil Mechanics, 2008, 29(8): 2257-2261.
5 Alhassan H. Effect of `ionic soil stabilizer 2500’ on the properties of black cotton soil[J]. British Journal of Applied Science & Technology, 2013, 3(3): 406-416.
6 Marto A, Latifi N, Sohaei H. Stabilization of laterite soil using GKS soil stabilizer[J]. Electronic Journal of Geotechnical Engineering, 2013, 18(18): 521-532.
7 南京水利科学研究院. 土的工程分类标准[M]. 北京: 中国计划出版社, 2008.
8 交通部公路科学研究所. 公路土工试验规程: JTG E40—2007[M]. 北京: 人民交通出版社, 2007.
9 牛斌. 剑麻纤维加筋土力学性能试验研究[D]. 青岛: 山东科技大学土木工程与建筑学院, 2013.
Niu Bin. Experimental study on mechanical properties for soil reinforced with sisal fiber[D]. Qingdao: School of Civil Engineering and Architecture, Shandong University of Science and Technology, 2013.
10 Wu Y K, Li Y B, Niu B. Investigation of mechanical properties of randomly distributed sisal fiber reinforced soil[J]. Materials Research Innovations, 2015, 18(Sup.2): 953-959.
11 张鹏远, 白冰, 蒋思晨. 聚丙烯酰胺改性掺砂混杂纤维水泥土的无侧限抗压强度[J]. 中国铁道科学, 2014, 35(6): 7-14.
Zhang Peng-yuan, Bai Bing, Jiang Si-chen. Unconfined compressive strength of hybrid fiber cement soil mixed with sand and modified by polyacrylamide[J]. China Railway Science, 2014, 35(6): 7-14.
12 Morel J C, Ghavami K, Mesbah A. Theoretical and experimental analysis of composite soil blocks reinforced with sisal fibers subjected to shear[J]. Masonry International, 2000, 13(2): 54-62.
13 交通部公路科学研究院. 公路工程无机结合料稳定材料试验规程: JTG E51—2009[M]. 北京: 人民交通出版社, 2009.
14 刘寒冰, 王静, 魏海斌, 等. 冻融循环下路基土抗剪强度与塑性指数相关性[J]. 吉林大学学报: 工学版, 2011, 41(增刊2): 149-152.
Liu Han-bing, Wang Jing, Wei Hai-bin, et al. Correlation of subgrade soil shear strength and plasticity index under freeze-thaw cycles[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(sSup.2: 149-152.
15 许雷, 刘斯宏, 鲁洋, 等. 冻融循环下膨胀土物理力学特性研究[J]. 岩土力学, 2016, 37(增刊2): 167-174.
Xu Lei, Liu Si-hong, Lu Yang, et al. Physicalmechanical properties of expansive soil under freeze-thaw cycles[J]. Rock and Soil Mechanics, 2016, 37(Sup.2): 167-174.
16 方秋阳, 柴寿喜, 李敏, 等. 冻融循环对固化盐渍土的抗压强度与变形的影响[J]. 岩石力学与工程学报, 2016, 35(5): 1041-1047.
Fang Qiu-yang, Chai Shou-xi, Li Min, et al. Influence of freezing-thawing cycles on compressive strength and deformation of solidified saline soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(5): 1041-1047.
17 Ekaterina K, Liu J K, Niu W W, et al. Performance of clay soil reinforced with fibers subjected to freeze-thaw cycles[J]. Cold Regions Science and Technology, 2018, 153: 18-24.
18 罗蓉, 曾哲, 张德润, 等. 基于插板法膜压力模型的沥青混合料水稳定性评价[J]. 吉林大学学报: 工学版, 2017, 47(6): 90-96.
Luo Rong, Zeng Zhe, Zhang De-run, et al. Moisture stability evaluation of asphalt mixture based on film pressure model of Wilhelmy plate method[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(6): 90-96.
19 冯美果, 陈善雄, 余颂, 等. 粉煤灰改性膨胀土水稳定性试验研究[J]. 岩土力学, 2007, 28(9): 1889-1893.
Feng Mei-guo, Chen Shan-xiong, Yu Song, et al. Laboratory study on water stability of flyash-treated expansive soil[J]. Rock and Soil Mechanics, 2007, 28(9): 1889-1893.
20 聂庆科, 王英辉, 梁书奇, 等. 广西靖西红黏土及其击实后的水稳定性试验研究[J]. 岩土力学, 2010, 31(4): 1134-1138.
Nie Qing-ke, Wang Ying-hui, Liang Shu-qi, et al. Water-sensitivity of compacted laterite clays in Jingxi of Guangxi Region[J]. Rock and Soil Mechanics, 2010, 31(4): 1134-1138.
[1] 方宇,孙立军. 基于生存分析的城市桥梁使用性能衰变模型[J]. 吉林大学学报(工学版), 2020, 50(2): 557-564.
[2] 王芳,李晓光,郭慧,胡佳. 基于驾驶员视觉兴趣区的沙漠草原公路曲线间直线段线形指标优化[J]. 吉林大学学报(工学版), 2020, 50(1): 114-120.
[3] 王英,李萍,念腾飞,姜继斌. 基于动水冲刷作用的沥青混合料短期水损害特性[J]. 吉林大学学报(工学版), 2020, 50(1): 174-182.
[4] 万平,吴超仲,马晓凤. 基于ROC曲线和驾驶行为特征的驾驶愤怒强度判别阈值[J]. 吉林大学学报(工学版), 2020, 50(1): 121-131.
[5] 熊锐,乔宁,褚辞,杨发,关博文,盛燕萍,牛冬瑜. 掺盐沥青胶浆低温流变及粘附特性[J]. 吉林大学学报(工学版), 2020, 50(1): 183-190.
[6] 朱春凤,程永春,梁春雨,肖波. 硅藻土⁃玄武岩纤维复合改性沥青混合料路用性能试验[J]. 吉林大学学报(工学版), 2020, 50(1): 165-173.
[7] 狄胜同,贾超,乔卫国,李康,童凯. 橡胶集料混凝土细观损伤特性的加载速率效应[J]. 吉林大学学报(工学版), 2019, 49(6): 1900-1910.
[8] 张云龙,周刘光,王静,吴春利,吕翔. 冻融对粉砂土力学特性及路堤边坡稳定性的影响[J]. 吉林大学学报(工学版), 2019, 49(5): 1531-1538.
[9] 彭勇,高华,万蕾,刘贵应. 沥青混合料劈裂强度影响因素数值模拟[J]. 吉林大学学报(工学版), 2019, 49(5): 1521-1530.
[10] 李晓珍,柳俊哲,戴燕华,贺智敏,巴明芳,李玉顺. 碳化作用下水泥浆内亚硝酸根离子的含量分布[J]. 吉林大学学报(工学版), 2019, 49(4): 1162-1168.
[11] 于天来,李海生,黄巍,王思佳. 预应力钢丝绳加固钢筋混凝土梁桥抗剪性能[J]. 吉林大学学报(工学版), 2019, 49(4): 1134-1143.
[12] 黄晓明,曹青青,刘修宇,陈嘉颖,周兴林. 基于路表分形摩擦理论的整车雨天制动性能模拟[J]. 吉林大学学报(工学版), 2019, 49(3): 757-765.
[13] 王静,吕翔,曲肖龙,钟春玲,张云龙. 路基土抗剪强度与化学及矿物成分的关系[J]. 吉林大学学报(工学版), 2019, 49(3): 766-772.
[14] 李伊,刘黎萍,孙立军. 沥青面层不同深度车辙等效温度预估模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1703-1711.
[15] 念腾飞, 李萍, 林梅. 冻融循环下沥青特征官能团含量与流变参数灰熵分析及微观形貌[J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!