吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (11): 2626-2635.doi: 10.13229/j.cnki.jdxbgxb20210321

• 交通运输工程·土木工程 • 上一篇    

630 MPa高强钢筋混凝土大偏压柱受力性能试验

王毅红1(),田桥罗1,2,兰官奇3,姚圣法4,张建雄1,刘喜1   

  1. 1.长安大学 建筑工程学院,西安 710061
    2.中国电建集团贵州电力设计研究院有限公司,贵阳 550081
    3.西安石油大学 土木工程学院,西安 710065
    4.江苏天舜金属材料集团有限公司,江苏 扬中 212219
  • 收稿日期:2021-04-13 出版日期:2022-11-01 发布日期:2022-11-16
  • 作者简介:王毅红(1955-),女,教授,博士.研究方向:混凝土与砌体结构及工程抗震. E-mail: wangyh@chd.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(51578072);陕西省《热处理带肋高强钢筋混凝土结构应用技术规程》编制项目(220028170272)

Experimental research on the mechanical properties of concrete column reinforced with 630 MPa high⁃strength steel under large eccentric loading

Yi-hong WANG1(),Qiao-luo TIAN1,2,Guan-qi LAN3,Sheng-fa YAO4,Jian-xiong ZHANG1,Xi LIU1   

  1. 1.School of Civil Engineering,Chang'an University,Xi'an 710061,China
    2.POWERCHINA Guizhou Electric Power Engineering Co. ,Ltd. ,Guiyang 550081,China
    3.School of Civil Engineering,Xi'an Shiyou University,Xi'an 710065,China
    4.Jiangsu Tianshun Metal Materials Group Co. ,Ltd. ,Yangzhong 212219,China
  • Received:2021-04-13 Online:2022-11-01 Published:2022-11-16

摘要:

设计制作了17根630 MPa新型热处理带肋高强钢筋混凝土大偏心受压足尺柱试件,分析其破坏形态、侧向挠度、钢筋应变、混凝土应变及承载力,以研究630 MPa高强钢筋混凝土大偏心受压柱的受力性能和630 MPa高强钢筋的应力状态及抗压强度发挥水平。结果表明:630 MPa高强钢筋混凝土大偏心受压柱的典型破坏形态与普通钢筋混凝土相同;混凝土受压区所能达到的极限压应变大于现行规范采用的0.0033,有利于偏心受压构件中630 MPa高强钢筋抗压强度的充分发挥,达到与抗拉强度相同的值。各试件承载力试验值均远大于其承载力设计值,两者比值的平均值为1.887,用现行规范对630 MPa级高强钢筋混凝土柱构件进行设计计算是合理且安全的。提出了630 MPa高强钢筋在偏压构件中抗拉和抗压强度设计值取值均为545 MPa的建议,为制定高强钢筋混凝土结构应用技术规程和推广630 MPa高强钢筋的工程应用提供了试验依据。

关键词: 结构工程, 630 MPa高强钢筋, 大偏心受压, 高强钢筋混凝土柱, 抗压强度, 承载力

Abstract:

To study the mechanical properties of high-strength steel reinforced concrete columns under large eccentric loading, and to determine the stress state and the compressive strength level of a new developed 630 MPa ribbed high-strength steel, 17 concrete columns reinforced with 630 MPa high-strength steel tested under large eccentric compression were fabricated, and the failure pattern, lateral deflection, strain of steel and concrete, and the bearing capacity were analyzed. The results show that the typical failure pattern of 630 MPa high-strength steel reinforced concrete column with large eccentric compression is the same as that of ordinary reinforced concrete column. The ultimate compressive strain of concrete compression zone is greater than 0.0033 in the current code, which is conducive to give full play to the compressive strength of 630 MPa high strength reinforcement in eccentric compression member, so that the compressive strength reaches the same value as the tensile strength. The test value of bearing capacity of each specimen is much higher than its design value, with an average value of the ratio of 1.887. It is reasonable and safe to design and calculate the 630 MPa high strength reinforced concrete column members by using the current specification. The tensile and compressive strength design values as 545 MPa of the 630 MPa high-strength steel in column member subjected to eccentricity is put forward, providing an experimental basis for the compilation of technical specification for high-strength bar in concrete structures and the promotion of 630 MPa high-strength steel in engineering application.

Key words: structural engineering, 630 MPa high-strength steel, large eccentric compression, high strength reinforced concrete column, compressive strength, bearing capacity

中图分类号: 

  • TU375.3

图1

试件几何尺寸及配筋"

表1

试件一览表"

试件编号混凝土强度等级b/mmh/mme0/mm纵筋配置箍筋配置
d/mmρ/%纵筋种类配箍形式箍筋种类
EC1-1C50300500270160.54T638@ 100T63
EC1-2300500270221.01T638@ 70HRB400
EC1-3300500270251.31T638@ 70HRB400
EC2-1C50300500270160.54TB638@ 100T63
EC2-2300500270221.01TB638@ 100T63
EC2-3300500270251.31TB638@ 70HRB400
EC3-1C50300500220160.54TB638@ 100T63
EC3-2300500320160.54TB635@ 100高强钢丝
EC4-1C50300500270160.54TB638@ 70HRB400
EC4-2300500270160.54TB638@ 70T63
EC4-3300500270160.54TB635@ 100高强钢丝
EC4-4300500270160.54TB635@ 70高强钢丝
EC4-5300500270160.54TB638@ 50T63
EC5-1C40300500270160.54TB638@ 100T63
EC5-2300500270221.01TB638@ 100T63
EC6-1C30300500270160.54TB635@ 100高强钢丝
EC6-2300500270160.54TB638@ 70HRB400

表2

混凝土材料性能"

混凝土强度等级fcu,m/MPafc,m/MPa
C5050.5932.67
C4041.5127.76
C3031.2620.90

表3

钢筋材料性能"

钢筋类别直径/mmfy,m/MPafu,m/MPa最大力下的总伸长率/%断后伸 长率/%
T631663381911.021.9
T632265984710.319.2
T632565585610.4
HRB400847664711.629.3
T63868681315.023.9
高强钢丝5147017338.714.3

图2

加载与量测"

表4

大偏心受压构件试验结果"

试件编号Ncr/kNNs/kNf/mm破坏形态
EC1-127417795.07受拉破坏
EC1-230721924.00混合破坏
EC1-326822793.00牛腿破坏
EC2-129317784.77受拉破坏
EC2-228422415.40受拉破坏
EC2-327621453.43牛腿破坏
EC3-136724043.59受拉破坏
EC3-225012897.30受拉破坏
EC4-129617195.04受拉破坏
EC4-231117485.69受拉破坏
EC4-326815553.69牛腿破坏
EC4-422616624.19混合破坏
EC4-531117725.23受拉破坏
EC5-130415244.51受拉破坏
EC5-234419924.57混合破坏
EC6-126913645.44混合破坏
EC6-224810783.56牛腿破坏

图3

试件典型受拉破坏"

图4

侧向挠度曲线"

图5

纵向钢筋应变曲线"

图6

混凝土应变曲线"

图7

各试验参数对承载力的影响"

表5

大偏心受压柱承载力分析"

试件编号Nd/kNNu1/kNNu2/kNNs/kNNs/NdNs/Nu1Ns/Nu2Nu2/Nu1
EC1-18861108107817792.0091.6061.6500.973
EC1-213001676161921921.6861.3081.3540.966
EC2-18861108107817782.0081.6051.6490.973
EC2-213001676161922411.7241.3381.3840.966
EC3-112011549151524042.0021.5521.5870.978
EC3-266681379112891.9351.5861.6300.973
EC4-18861108107817191.9411.5521.5950.973
EC4-28861108107817481.9731.5781.6220.973
EC4-48861108107816621.8771.5001.5420.973
EC4-58861108107817722.0011.6001.6440.973
EC5-18231042101315241.8521.4621.5040.972
EC5-212011568151419921.6581.2701.3160.966
EC6-173393490813641.8601.4611.5020.972
平均值μ1.8871.4941.5370.972
标准差σ0.1210.1140.1130.003
变异系数δ0.0640.0760.0740.003
1 Hou Y H, Cao S Y, Ni X Y, et al. Research on concrete columns reinforced with new developed high-strength steel under eccentric loading[J]. Materials, 2019, 12(13): 12132139.
2 王毅红, 赵一迪, 牛行行, 等. 新型高强钢筋与混凝土粘结锚固性能试验[J]. 武汉大学学报: 工学版, 2020, 53(6): 507-512, 526.
Wang Yi-hong, Zhao Yi-di, Niu Hang-hang, et al. Experimental study of bond-anchorage properties of a new type high-strength rebar with concrete[J]. Engineering Journal of Wuhan University, 2020, 53(6): 507-512, 526.
3 . 混凝土结构设计规范 [S].
4 Gao D Y, Huang Y C, Gang C, et al. Bond stress distribution analysis between steel bar and steel fiber reinforced concrete using midpoint stress interpolation method[J]. Construction and Building Materials, 2020, 260: 119866.
5 孙传智, 缪长青, 李爱群, 等. 短期荷载作用下600 MPa级超高强钢筋混凝土梁裂缝宽度试验研究[J]. 土木工程学报, 2020, 53(1): 12-23.
Sun Chuan-zhi, Miao Chang-qing, Li Ai-qun, et al. Experimental study on crack width of concrete beam with 600 MPa ultra-high strength steel bars under short-term loading[J]. China Civil Engineering Journal, 2020, 53(1): 12-23.
6 傅剑平, 姚佳琳, 崔嘉仁, 等. 配置高强钢筋工字形截面剪力墙试件抗震抗剪性能试验与有限元分析[J]. 土木工程学报, 2018, 51(3): 44-51, 68.
Fu Jian-ping, Yao Jia-lin, Cui Jia-ren, et al. Experimental studies and finite element analysis on seismic shear behavior of high-strength rebars shear walls with flanges[J]. China Civil Engineering Journal, 2018, 51(3): 44-51, 68.
7 Jiang J, Peng Z Y, Ye Z J, et al. Behaviour of 690 MPa high strength steel built-up H-section columns under eccentric load scenarios[J]. Engineering Structures, 2020, 213: 110550.
8 张建伟, 李晨, 李翔宇, 等. HRB600级钢筋高强混凝土柱抗震性能试验研究[J]. 土木工程学报, 2019, 52(8): 6-17.
Zhang Jian-wei, Li Chen, Li Xiang-yu, et al. Experimental study on seismic behavior of high-strength concrete columns with HRB600 steel bars[J], China Civil Engineering Journal, 2019, 52(8): 6-17.
9 李义柱. 600 MPa级钢筋混凝土柱受力性能试验与理论研究[D]. 南京: 东南大学土木工程学院, 2019.
Li Yi-zhu. Experimental and theoretical research on mechanical behavior of RC columns with 600 MPa reinforcing bars[D]. Nanjing: School of Civil Engineering, Southeast University, 2019.
10 张建伟, 夏冬瑞, 乔崎云, 等. HRB600级钢筋高强混凝土柱偏心受压性能试验研究[J]. 建筑结构学报, 2019, 40(4): 74-80.
Zhang Jian-wei, Xia Dong-rui, Qiao Qi-yun, et.al. Experimental study on eccentric compression performance of high-strength concrete columns with HRB600 steel bars[J]. Journal of Building Structures, 2019, 40(4): 74-80.
11 戎贤, 杜虹茜, 张健新. HRB600E钢筋混凝土偏心受压柱受力性能试验研究[J]. 硅酸盐通报, 2019, 38(1): 60-64.
Rong Xian, Du Hong-xi, Zhang Jian-xin. Experimental research on mechanical behavior of eccentrically loaded reinforced concrete column with 600 MPa steel bars[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(1): 60-64.
12 . 新型热处理带肋高强钢筋混凝土结构技术规程 [S].
13 D. 热处理带肋高强钢筋混凝土结构技术规程 [S].
14 321182-R046—2016. T63热处理带肋高强钢筋混凝土结构技术规程 [S].
15 . 钢筋混凝土用钢第2部分: 热轧带肋钢筋 [S].
16 . 混凝土物理力学性能试验方法标准 [S].
17 . 金属材料拉伸试验第1部分:室温试验方法 [S].
18 过镇海, 时旭东. 钢筋混凝土原理和分析[M]. 北京: 清华大学出版社, 2003.
[1] 褚云朋,孙鑫晖,李明,姚勇,黄汉杰. 下击暴流作用下圆形马鞍面屋盖风压特性[J]. 吉林大学学报(工学版), 2022, 52(8): 1826-1833.
[2] 姚勇,苏留锋,李明,褚云朋,黄汉杰. 下击暴流作用下双面球壳型屋面风载特性[J]. 吉林大学学报(工学版), 2022, 52(3): 615-625.
[3] 匡亚川,宋哲轩,刘胤虎,莫小飞,伏亮明,罗时权. 新型装配式双舱综合管廊力学性能试验[J]. 吉林大学学报(工学版), 2022, 52(3): 596-603.
[4] 许博,李传习. 基于灰色理论的大跨度钢管混凝土拱桥承载能力检测方法[J]. 吉林大学学报(工学版), 2022, 52(10): 2360-2366.
[5] 龚永智,况锦华,柯福隆,周泉,罗小勇. UHPC连接的装配式剪力墙节点抗震性能试验[J]. 吉林大学学报(工学版), 2022, 52(10): 2367-2375.
[6] 樊学平,杨光红,尚志鹏,赵小雄,肖青凯,刘月飞. 考虑适用性的大跨桥梁主梁动态可靠性融合预测[J]. 吉林大学学报(工学版), 2022, 52(1): 144-153.
[7] 周靖,黎亚军,赵卫锋,罗宗健,补国斌. 胶合竹板-钢管约束收尘石粉混凝土柱的偏压性能[J]. 吉林大学学报(工学版), 2021, 51(6): 2096-2107.
[8] 刘福寿,魏琦,徐文婷,谭国金. 基于弹性波传播和谱单元法的桁架结构损伤检测[J]. 吉林大学学报(工学版), 2021, 51(6): 2087-2095.
[9] 钟昌均,王忠彬,柳晨阳. 悬索桥主索鞍承载力影响因素及结构优化[J]. 吉林大学学报(工学版), 2021, 51(6): 2068-2078.
[10] 樊学平,杨光红,肖青凯,刘月飞. 大跨桥梁主梁失效概率分析的最优R-Vine Copula[J]. 吉林大学学报(工学版), 2021, 51(4): 1296-1305.
[11] 戴岩,聂少锋,周天华. 环梁式圆钢管约束H型钢混凝土柱-钢梁节点抗剪承载力[J]. 吉林大学学报(工学版), 2021, 51(3): 977-988.
[12] 张广泰,张路杨,邢国华,曹银龙,易宝. 钢-聚丙烯混杂纤维混凝土剪力墙抗震性能[J]. 吉林大学学报(工学版), 2021, 51(3): 946-955.
[13] 于江,赵志浩,秦拥军. 基于声发射和分形的钢筋混凝土受剪梁损伤[J]. 吉林大学学报(工学版), 2021, 51(2): 620-630.
[14] 熊二刚,徐涵,谭赐,王婧,丁若愚. 基于弹塑性应力场理论的钢筋混凝土梁受剪承载力[J]. 吉林大学学报(工学版), 2021, 51(1): 259-267.
[15] 戴文亭,司泽华,王振,王琦. 剑麻纤维水泥加固土的路用性能试验[J]. 吉林大学学报(工学版), 2020, 50(2): 589-593.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!