吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (5): 1188-1195.doi: 10.13229/j.cnki.jdxbgxb.20220728
• 车辆工程·机械工程 • 上一篇
黄玲1,2(),崔躜1,游峰1,3(),洪佩鑫1,钟浩川1,曾译萱1
Ling HUANG1,2(),Zuan CUI1,Feng YOU1,3(),Pei-xin HONG1,Hao-chuan ZHONG1,Yi-xuan ZENG1
摘要:
提出了一种具有动态交互感知池化层的多长短期记忆神经网络(DIP-LSTM)模型结构,使得场景中相邻的车辆通过池化(Pooling)共享各自LSTM网络隐藏态,获取历史轨迹特征,进而实现自车与周围多车的时间空间关系的交互性建模,并输出车辆未来的预测轨迹。使用美国的NGSIM和德国的High-D自然驾驶车辆轨迹数据集对模型进行训练与测试,并对模型的精度、鲁棒性和迁移性(普适性)进行验证。研究结果表明:与传统模型的预测方法相比,考虑多车交互信息的DIP-LSTM网络的预测方法在预测精度与长时域预测上具有优势,且模型具有良好的迁移性和鲁棒性,显著提高了车辆轨迹预测模型的实用性和普适性。
中图分类号:
1 | Lefevre S, Vasquez D, Laugier C. A survey on motion prediction and risk assessment for intelligent vehicles[J]. Robomech Journal, 2014, 1(1):No.101186. |
2 | Ammoun S, Nashashibi F. Real time trajectory prediction for collision risk estimation between vehicles[C]∥ IEEE International Conference on Intelligent Computer Communication & Processing, Cluj-Napoca, Romania, 2009: 417-422. |
3 | Broadhurst A, Baker S, Kanade T. Monte Carlo road safety reasoning[C]∥ 2005 IEEE Intelligent Vehicles Symposium Proceedings, Las Vegas, USA, 2005: 319-324. |
4 | Aoude G S, Desaraju V R, Stephens L H, et al. Driver behavior classification at intersections and validation on large naturalistic data set[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(2):724-736. |
5 | Xin L, Wang P, Chan C, et al. Intention-aware long horizon trajectory prediction of surrounding vehicles using dual LSTM networks[C]∥ International IEEE Conference on Intelligent Transportation Systems (ITSC), Maui, USA, 2018: 1441-1446. |
6 | 季学武, 费聪, 何祥坤, 等. 基于LSTM网络的驾驶意图识别及车联轨迹预测[J]. 中国公路学报, 2019, 32(6): 34-42. |
Ji Xue-wu, Fei Cong, He Xiang-kun, et al. Intention recognition and trajectory prediction for vehicles LSTM networks[J]. China Journal of Highway and Transport, 2019, 32(6): 34-42. | |
7 | Deo N, Trivedi M M. Multi-Modal trajectory prediction of surrounding vehicles with maneuver based LSTMs[C]∥ IEEE Conference on Intelligent Vehicles (IV), Changshu, China, 2018: 1179-1184. |
8 | Altché F, Fortelle A D L. An LSTM network for highway trajectory prediction[C]∥ International IEEE Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 2017: 353-359. |
9 | Deo N, Trivedi M M. Convolutional social pooling for vehicle tajectory prediction[C]∥ International Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake, USA, 2018: 1549-1557. |
10 | Zhang H, Wang Y, Liu J, et al. A multi-modal states based vehicle descriptor and dilated convolutional social pooling for vehicle trajectory prediction[C]∥ SAE Technical Papers, New York, USA, 2020:1-8. |
11 | Wang J Q, Huang H Y, Li K Q, et al. Towards the unified principles for level 5 autonomous vehicles[J/OL]. [2022-06-10]. |
12 | Sajjad M, Omar Y, Jarrah A, et al. Deep learning-based vehicle behavior prediction for autonomous driving applications: a review[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23(1): 33-47. |
13 | Alahi A, Goel K, Ramanathan V, et al. Social LSTM: human trajectory prediction in crowded spaces[C]∥ IEEE Conference on Computer Vision and Pattern Recognition(CVPR), New York, USA, 2016: 961-971. |
14 | Graves A. Generating sequences with recurrent neural networks[J]. arXiv Preprint, 2013, 8:No.13080850. |
15 | Federal Highway Administration. NGSIM-Next generation simulation [EB/OL]. [2022-06-10]. . |
16 | Robert K, Julian B, Lutz E, et al. The highD dataset: a drone dataset of naturalistic vehicle trajectories on german highways for validation of highly automated driving systems [C]∥ International IEEE Conference on Intelligent Transportation Systems (ITSC), Maui, USA, 2018: 2118-2125. |
17 | Savitzky A, Golay M J. Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical Chemistry, 1964, 36(8): 1627-1639. |
18 | 黄玲, 郭亨聪, 张荣辉, 等. 人机混驾环境下基于LSTM的无人驾驶车辆换道行为模型[J]. 中国公路学报, 2020, 33(7): 156-165. |
Huang Ling, Guo Heng-cong, Zhang Rong-hui, et al. LSTM-based lane-changing behavior model for unmanned vehicle under environment of heterogeneous human-driven and autonomous vehicles[J]. China Journal of Highway and Transport, 2020, 33(7): 156-165. | |
19 | Huber P J. Robust statistics[M]. New York: John Wiley & Son, 2004. |
[1] | 郭洪艳,王连冰,赵旭,戴启坤. 考虑侧向运动的整车质量与道路坡度估计[J]. 吉林大学学报(工学版), 2024, 54(5): 1175-1187. |
[2] | 汪少华,张启睿,施德华,殷春芳,李春. 双行星排式混合动力传动系统非线性振动响应特性分析[J]. 吉林大学学报(工学版), 2024, 54(4): 890-901. |
[3] | 曲大义,张可琨,顾原,王韬,宋慧,戴守晨. 自动驾驶车辆换道决策行为分析及分子动力学建模[J]. 吉林大学学报(工学版), 2024, 54(3): 700-710. |
[4] | 高镇海,蔡荣贵,孙天骏,于桐,赵浩源,班浩. 人机共驾下的驾驶行为数据滤波方法[J]. 吉林大学学报(工学版), 2024, 54(3): 589-599. |
[5] | 谢宪毅,王禹涵,金立生,赵鑫,郭柏苍,廖亚萍,周彬,李克强. 基于改变控制时域时间步长的智能车轨迹跟踪控制[J]. 吉林大学学报(工学版), 2024, 54(3): 620-630. |
[6] | 涂辉招,王万锦,乔鹏,郭静秋,鹿畅,吴海飞. 自动驾驶卡车路测安全员接管干预行为解析[J]. 吉林大学学报(工学版), 2024, 54(3): 727-740. |
[7] | 胡宏宇,张慧珺,姚荣涵,陈国迎,高菲. L3级自动驾驶接管过程驾驶员情景意识研究[J]. 吉林大学学报(工学版), 2024, 54(2): 410-418. |
[8] | 邓小林,杨馥模,覃善甘. 新型仿竹六边形梯度层级多胞管耐撞性对比分析[J]. 吉林大学学报(工学版), 2024, 54(2): 333-345. |
[9] | 王毅刚,王玉鹏,张昊,赵思安. 高速列车转向架区域气动噪声源识别与分析[J]. 吉林大学学报(工学版), 2024, 54(2): 346-355. |
[10] | 聂建军,侯军凯,解晓琳,鄢鸿桢. 新型巡检机器人移动底盘设计及越障性能分析[J]. 吉林大学学报(工学版), 2024, 54(2): 356-364. |
[11] | 王铁,李旭东,田程,赵宏伟. 基于多轴载荷投影构建轮辋双轴疲劳损伤模型[J]. 吉林大学学报(工学版), 2024, 54(1): 99-104. |
[12] | 李旭东,王新宇,田程,张新峰,牛治慧,赵志强. 基于用户关联的车辆耐久性载荷谱编制[J]. 吉林大学学报(工学版), 2024, 54(1): 66-75. |
[13] | 吴骁,史文库,郭年程,赵燕燕,陈志勇,李鑫鹏,孙卓,刘健. 基于Ease off的准双曲面齿轮多目标优化[J]. 吉林大学学报(工学版), 2024, 54(1): 76-85. |
[14] | 陈兆玮,蒲前华. 弹性车轮对大跨斜拉桥车桥耦合振动的抑制特性[J]. 吉林大学学报(工学版), 2023, 53(9): 2519-2532. |
[15] | 张健,李青扬,李丹,姜夏,雷艳红,季亚平. 基于深度强化学习的自动驾驶车辆专用道汇入引导[J]. 吉林大学学报(工学版), 2023, 53(9): 2508-2518. |
|