吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (6): 1736-1745.doi: 10.13229/j.cnki.jdxbgxb.20221615

• 交通运输工程·土木工程 • 上一篇    

基于振动传递的水泥混凝土路面接缝损伤感知

金辰1,2(),曾孟源2,3,4(),吴荻非3   

  1. 1.上海市城市建设设计研究总院(集团)有限公司 道路与桥梁设计研究院,上海 200125
    2.同济大学 民航飞行区设施耐久与运行安全重点实验室,上海 201804
    3.同济大学 道路与交通工程教育部重点实验室,上海 201804
    4.苏黎世联邦理工学院 土木工程系,苏黎世 8093
  • 收稿日期:2022-12-21 出版日期:2023-06-01 发布日期:2023-07-23
  • 通讯作者: 曾孟源 E-mail:jinchen2982@sucdri.com;myzeng@tongji.edu.cn
  • 作者简介:金辰(1993-),男,工程师,博士.研究方向:道路与机场工程.E-mail:jinchen2982@sucdri.com
  • 基金资助:
    国家自然科学基金项目(52008309);交通运输部2020年交通运输行业重点科技项目(2020-ZD3-025);民航飞行区设施耐久与运行安全重点实验室开放基金项目(MK202201)

Damage identification of concrete pavement joint using vibration transmissibility

Chen JIN1,2(),Meng-yuan ZENG2,3,4(),Di-fei WU3   

  1. 1.Road and Bridge Design and Research Institute,Shanghai Urban Construction Design and Research Institute (Group) Co. ,Ltd. ,Shanghai 200125,China
    2.Key Laboratory of Infrastructure Durability and Operation Safety in Airfield of CAAC,Tongji University,Shanghai 201804,China
    3.Key Laboratory of Road and Traffic Engineering of Ministry of Education,Tongji University,Shanghai 201804,China
    4.Department of Civil,Environmental and Geomatic Engineering,ETH Zurich,Zurich 8093 ; Switzerland
  • Received:2022-12-21 Online:2023-06-01 Published:2023-07-23
  • Contact: Meng-yuan ZENG E-mail:jinchen2982@sucdri.com;myzeng@tongji.edu.cn

摘要:

采用振动传递理论分析了接缝刚度对振动跨缝传递特性的影响机制,并通过40万次缩尺度室内疲劳加载测试,验证了接缝边界损伤对振动传递特性的影响规律,据此建立了基于振动传递率的接缝损伤感知方法。依托6块水泥混凝土路面板接缝的振动传递率实测结果,并与弯沉比检测结果进行对比,检验振动传递率感知接缝损伤的实际效果。结果表明:接缝两侧振动传递率与接缝刚度显著相关(相关系数>0.8),在不同季节和不同接缝的重复性测试中振动传递率均能够灵敏、准确地感知接缝损伤(刚度损失比识别精度为±0.069),验证了该接缝损伤感知方法的可靠性。

关键词: 道路与铁道工程, 接缝, 损伤感知, 振动传递, 水泥混凝土路面

Abstract:

The impact of joint stiffness on vibration transmissibility across concrete pavement joints was analyzed by theoretical analysis, and a vibration-based identification method for joint damage was proposed. Furthermore, laboratory tests were conducted using MTS to verify the influence of local stiffness-loss on vibration transmissibility, with 400,000 loading cycles being applied. In addition, six concrete pavement slabs were constructed to conduct a comparative analysis with the deflection-based method, to further validate the proposed vibration-based method in actual engineering environments. The results indicate that there is a significant correlation between frequency transmissibility and joint stiffness, with a correlation coefficient of over 0.8. The repeated tests conducted on different joints and in different seasons suggest that the stiffness-loss ratio of joints can be identified with an accuracy of ± 0.069, thereby confirming the accuracy and reliability of the proposed damage identification method.

Key words: road and railway engineering, joint, damage identification, vibration transmissibility, concrete pavement

中图分类号: 

  • U416.222

图1

接缝刚度对接缝两侧振动传递的影响"

图2

接缝边界振动传递率实测流程图"

图3

接缝缩尺度试验设置"

图4

振动数据处理示例"

图5

室内试验结果"

图6

TDI与刚度变化比的关系"

图7

现场试验设置图"

图8

传感器布置"

图9

现场实测数据示例"

表1

现场足尺试验实测结果(夏季)"

项目接缝号
ABCDEFG
传递率样本10.900.880.860.760.990.970.93
传递率样本20.930.880.860.720.970.950.90
传递率样本30.940.910.850.870.990.980.92
传递率样本40.940.900.850.850.910.961.00
传递率样本50.960.900.850.880.950.950.99
传递率样本60.940.880.850.840.990.960.96
传递率样本70.940.930.860.780.950.970.96
传递率样本80.930.930.860.800.960.960.97
传递率样本90.930.940.860.841.020.960.97
传递率平均值0.930.910.850.810.970.960.96
刚度系数28.217.810.07.1074.555.746.7
基频传递率0.880.930.810.800.950.960.97

表2

现场足尺试验实测结果(冬季)"

项目接缝号
ABCDEFG
传递率样本10.880.870.830.670.880.950.75
传递率样本20.880.870.840.670.870.950.74
传递率样本30.880.870.820.670.870.960.74
传递率样本40.880.870.840.690.880.950.75
传递率样本50.880.870.830.690.880.950.74
传递率样本60.880.870.810.690.890.950.74
传递率样本70.880.870.850.700.880.950.76
传递率样本80.880.870.840.700.880.950.76
传递率样本90.880.870.840.700.880.950.76
传递率平均值0.880.870.830.690.880.950.75
接缝刚度系数12.811.78.303.1013.041.14.50
基频传递率0.830.920.830.750.810.970.80

图10

接缝刚度系数与基频传递率的相关性"

图11

TDI与接缝刚度变化比Kr 的关系"

1 周正峰. 水泥混凝土路面接缝传荷能力的研究现状和发展趋势[J]. 公路, 2011(7): 49-53.
Zhou Zheng-feng. Current status and development trend for study on load transfer efficiency at joints for cement concrete pavement[J]. Journal of Highway, 2011(7): 49-53.
2 刘旭峰. 水泥混凝土路面接缝传荷衰变试验研究[D]. 西安: 长安大学公路学院, 2012.
Liu Xu-feng. Study of the decay of load transfer on cement concrete pavement[D]. Xi'an: School of Highway, Chang'an University, 2012.
3 Guo H, Petch F, Ricalde L. Analysis of concrete pavement strain data and behaviour during joint formation[J]. International Journal of Pavement Engineering, 2010, 11(3): 173-187.
4 Mackiewicz P. Analysis of stresses in concrete pavement under a dowel according to its diameter and load transfer efficiency[J]. Canadian Journal of Civil Engineering, 2015, 42(11): 845-853.
5 周正峰, 凌建明, 袁捷,等.机场刚性道面接缝传荷能力的评价[J]. 同济大学学报:自然科学版, 2010, 38(6): 844-849.
Zhou Zheng-feng, Ling Jian-ming, Yuan Jie, et al. Evaluation of load transfer efficiency at joints for rigid airport pavement[J]. Journal of Tongji University(Natural Science), 2010, 38(6): 844-849.
6 Crovetti J A, Crovetti M R T. Evaluation of support conditions under jointed concrete pavement slabs[J]. ASTM Special Technical Publication, 1994, 1198: No. 455.
7 唐伯明, 邓学钧. 刚性路面接缝传荷能力的评定与分析——FWD开发应用研究[J]. 东南大学学报: 自然科学版, 1991, 21(6): 84-91.
Tang Bo-ming, Deng Xue-jun. Assessment of load transfer across joints in rigid pavements using the FWD[J]. Journal of Southeast University (Natural Science Edition), 1991, 21(6): 84-91.
8 黄晓明, 赵忠慈. 落锤式弯沉仪(FWD)路面结构性能评价系统[J]. 中国公路学报, 1993(1): 25-29.
Huang Xiao-ming, Zhao Zhong-ci. Evaluation system of pavement structure performance by falling weight deflectometer[J]. China Journal of Highway and Transport, 1993(1): 25-29.
9 Khafajeh R, Shamsaei M, Tehrani H G, et al. Proposing load transfer efficiency as criterion for repairing longitudinal and transverse cracks of asphalt pavements[J]. Journal of Transportation Engineering, Part B: Pavements, 2021, 147(3): No.06021002.
10 Sok T, Hong S J, Kim Y K, et al. Evaluation of load transfer characteristics in roller-compacted concrete pavement[J]. International Journal of Pavement Engineering, 2020, 21(6): 796-804.
11 Guo E H. Back-estimation of slab curling and joint stiffness[C]∥Seventh International Conference on Concrete Pavements, Orlando, Florida, USA, 2001: 39-53.
12 李素超, 郭安薪, 崔丽丽, 等. 地震作用下高架桥梁碰撞应力波测量与分析[J]. 地震工程与工程振动, 2014, 34(): 511-515.
Li Su-chao, Guo An-xin, Cui Li-li, et al. Pounding induced stress wave acquisition and analysis of highway bridges during earthquake[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(Sup.1): 511-515.
13 谭国金, 姜霖, 吴春利, 等. 移动车辆作用下带有裂缝的多片梁式桥动力响应分析[J]. 吉林大学学报: 工学版, 2020, 50(6): 2147-2158.
Tan Guo-jin, Jiang Lin, Wu Chun-li, et al. Dynamic response analysis of multiple beam bridge with cracks under moving vehicles[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(6): 2147-2158.
14 程永春, 谭国金, 刘寒冰, 等. 车辆作用下的公路简支梁桥测试频率[J]. 吉林大学学报: 工学版, 2009, 39(6): 1492-1496.
Cheng Yong-chun, Tan Guo-jin, Liu Han-bing, et al. Test frequencies freely supported beam of highway bridge under effect of vehicles[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(6): 1492-1496.
15 祝青鑫, 王浩, 茅建校, 等. 基于聚类分析的桥梁结构模态参数自动识别方法[J]. 东南大学学报:自然科学版, 2020, 50(5): 837-843.
Zhu Qing-xin, Wang Hao, Mao Jian-xiao, et al. Automated modal parameter identification method for bridges based on cluster analysis[J]. Journal of Southeast University (Natural Science Edition), 2020, 50(5): 837-843.
16 马涛, 方周. 路基振动压实动力学响应机理研究[J].中国公路学报,2022, 35(5): 1-11.
Ma Tao, Fang Zhou. Simulation analysis of vibratory roller response on subgrade[J]. China Journal of Highway and Transport, 2022, 35(5): 1-11.
17 曾孟源, 赵鸿铎, 吴荻非, 等. 基于振动感知的混凝土铺面板底脱空识别方法[J]. 中国公路学报, 2020, 33(3): 42-52.
Zeng Meng-yuan, Zhao Hong-duo, Wu Di-fei, et al. Identification of cavities underneath concrete pavement based on pavement vibration[J]. China Journal of Highway and Transport, 2020, 33(3): 42-52.
18 张献民, 刘小兰, 张子文. 基于振动特性的机场刚性道面传荷性能[J]. 北京航空航天大学学报, 2018, 44(9): 1787-1796.
Zhang Xian-min, Liu Xiao-lan, Zhang Zi-wen. Rigid pavement load transfer ability of airport based on vibration characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1787-1796.
19 Chen Q, Chan Y W, Worden K, et al. Structural fault detection using neural networks trained on transmissibility functions[C]∥Proceedings of the International Conference on Vibration Engineering, Beijing, China, 1994: 446-456.
20 Maia N M M, Almeida R A B, Urgueira A P V, et al. Damage detection and quantification using transmissibility[J]. Mechanical Systems and Signal Processing, 2011, 25(7): 2475-2483.
21 Meruane V, Ortiz-Bernardin A. Structural damage assessment using linear approximation with maximum entropy and transmissibility data[J]. Mechanical Systems and Signal Processing, 2015, 54: 210-223.
22 顾建祖, 郝文峰, 骆英, 等. 基于固有模态函数振动传递率的结构损伤识别[J]. 建筑科学与工程学报, 2011, 28(1): 27-32.
Gu Jian-zu, Hao Wen-feng, Luo Ying, et al. Structural damage identification based on intrinsic mode function vibration transmissibility[J]. Journal of Architecture and Civil Engineering, 2011, 28(1): 27-32.
23 Zhu D, Yi X, Wang Y. A local excitation and measurement approach for decentralized damage detection using transmissibility functions[J]. Structural Control and Health Monitoring, 2016, 23(3): 487-502.
24 Wu D F, Zeng M Y, Zhao H D, et al. Detection and localization of debonding beneath concrete pavement using transmissibility function analysis[J]. Mechanical Systems and Signal Processing, 2021, 159: No.107802.
25 曾孟源, 赵鸿铎, 边泽英, 等. 基于分布式光纤的混凝土路面振动场感知与解析[J]. 中国公路学报, 2022, 35(7): 78-90.
Zeng Meng-yuan, Zhao Hong-duo, Bian Ze-ying, et al. Sensing and analysis of concrete pavement vibration field based on distributed optical fiber[J]. China Journal of Highway and Transport, 2022, 35(7): 78-90.
26 Zhang H, Schulz M J, Naser A, et al. Structural health monitoring using transmittance functions[J]. Mechanical Systems and Signal Processing, 1999, 13(5): 765-787.
27 郭寅川, 申爱琴, 田丰, 等. 动态疲劳荷载作用下路面混凝土力学性能研究[J]. 中国公路学报, 2017, 30(7):18-24.
Guo Yin-chuan, Shen Ai-qin, Tian Feng, et al. Mechanical property of pavement cement concrete under dynamic fatigue load[J]. China Journal of Highway and Transport, 2017, 30(7): 18-24.
28 Jia Y, Liu G, Gao Y, et al. Degradation reliability modeling of stabilized base course materials based on a modulus decrement process[J]. Construction and Building Materials, 2018, 177: 303-313.
29 . 民用机场道面评价管理技术规范 [S].
30 . 公路水泥混凝土路面设计规范 [S].
[1] 张茂健,金敬福,陈奕颖,陈廷坤. 轮式拖拉机对称结构的振动特性[J]. 吉林大学学报(工学版), 2023, 53(7): 2136-2142.
[2] 张阳,王傲鹏,张靖霖,马涛,陈思宇. 水泥稳定碎石材料干燥收缩研究综述[J]. 吉林大学学报(工学版), 2023, 53(2): 297-311.
[3] 叶奋,胡诗园. 考虑旧水泥路面接缝传荷能力的超薄罩面力学特性[J]. 吉林大学学报(工学版), 2022, 52(11): 2636-2643.
[4] 商拥辉,徐林荣,刘维正,蔡雨. 重载铁路改良土和A组填料过渡段的动力特性[J]. 吉林大学学报(工学版), 2021, 51(6): 2128-2136.
[5] 张姝玮,郭忠印,杨轸,柳本民. 驾驶行为多重分形特征在驾驶疲劳检测中的应用[J]. 吉林大学学报(工学版), 2021, 51(2): 557-564.
[6] 李阳,王连俊. 高铁站场宽路基复合地基二维模型适用性分析[J]. 吉林大学学报(工学版), 2020, 50(2): 621-630.
[7] 凌建明,陈卉,钱劲松,周定. 湿度有限波动下非饱和黏土路基动态回弹模量[J]. 吉林大学学报(工学版), 2020, 50(2): 613-620.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!