吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (6): 1729-1735.doi: 10.13229/j.cnki.jdxbgxb.20221124

• 交通运输工程·土木工程 • 上一篇    

基于PCA-PSO-SVM的沥青路面使用性能评价

李岩1(),张久鹏1(),陈子璇1,黄果敬1,王培2   

  1. 1.长安大学 公路学院,西安 710064
    2.广东省交通规划设计研究院,广州 510507
  • 收稿日期:2022-08-30 出版日期:2023-06-01 发布日期:2023-07-23
  • 通讯作者: 张久鹏 E-mail:liyan@chd.edu.cn;jiupengzhang@chd.edu.cn
  • 作者简介:李岩(1995-),男,博士研究生.研究方向:沥青路面智慧养护.E-mail:liyan@chd.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(51978068);中国博士后科学基金面上项目(2017M620434)

Evaluation of asphalt pavement performance based on PCA⁃PSO⁃SVM

Yan LI1(),Jiu-peng ZHANG1(),Zi-xuan CHEN1,Guo-jing HUANG1,Pei WANG2   

  1. 1.School of Highway,Chang'an University,Xi'an 710064,China
    2.Guangdong Communication Planning & Design Institute Group Co. ,Ltd. ,Guangzhou 510507,China
  • Received:2022-08-30 Online:2023-06-01 Published:2023-07-23
  • Contact: Jiu-peng ZHANG E-mail:liyan@chd.edu.cn;jiupengzhang@chd.edu.cn

摘要:

为合理地对沥青路面使用性能进行综合评价,针对传统路面使用性能评价方法主观性强以及已有模型存在缺陷等问题,提出了基于主成分分析-粒子群优化-支持向量机(PCA-PSO-SVM)的评价模型。通过主成分分析(PCA)对评价指标进行降维处理,形成彼此相互独立的主成分,利用粒子群算法(PSO)全局搜索优势对支持向量机(SVM)的关键参数——惩罚系数C和核函数参数g进行优化,以提高模型精度。最后,以西南地区某高速公路170个养护路段为例,分别使用PCA-PSO-SVM模型和《公路技术状况评定标准》对路面性能进行综合评价。结果表明,PCA-PSO-SVM模型克服了依靠经验确定参数的缺点,识别精度提高,评价结果更符合实际路况。

关键词: 道路工程, 沥青路面性能评价, 主成分分析, 粒子群算法, 支持向量机

Abstract:

In order to reasonably conduct a comprehensive evaluation of asphalt pavement performance, a PCA-PSO-SVM evaluation model based on principal component analysis and particle swarm optimization support vector machine is proposed to address the problems of the strong subjectivity of traditional pavement performance evaluation methods and the defects of existing models. The evaluation indicators are dimensionally reduced by Principal Component Analysis (PCA) to form mutually independent principal components. The key parameters of the Support Vector Machine (SVM)—the penalty coefficient C and the kernel function parameter g are optimized using the global search advantage of the Particle Swarm Algorithm (PSO) to improve model accuracy. Finally, 170 maintenance sections of a highway in the southwest region were used as an example to evaluate the pavement performance comprehensively using the PCA-PSO-SVM model and“Highway performance assessment standards”respectively. The results show that the PCA-PSO-SVM model overcomes the drawbacks of relying on empirical methods of determining parameters, improves the identification accuracy and makes the evaluation results more in line with the actual road conditions.

Key words: road engineering, asphalt pavement performance evaluation, principal component analysis, particle swarm algorithm, support vector machine

中图分类号: 

  • U414

图1

支持向量机分类原理图"

图2

PCA-PSO-SVM模型流程图"

表1

测试集数据"

路段序号PCIRQIRDIPBISRI标签
1-1.950-2.0120.002-0.829-0.8823
2-1.8380.5430.0950.6130.8501
30.0100.4290.279-1.5500.5392
40.5240.5100.9720.613-2.2481
50.492-0.9220.695-0.8290.2392
60.7160.5430.1410.613-1.0491
70.7160.461-0.460-2.2711.1502
80.7160.3640.1870.6130.5501
9-1.870-2.988-2.307-0.108-1.1603
100.7160.5430.7880.6130.2621
110.7160.5260.6030.613-1.9481
120.3470.5750.1410.6130.5951
130.074-1.280-2.9540.6131.7611
140.2990.5920.0950.6130.0511
150.4750.168-0.229-2.271-0.2722
160.7160.5590.3260.6130.1391
17-0.5850.217-0.460-0.1080.2732
18-1.7090.3470.2330.6130.6061
190.7160.5751.0190.6130.3731
200.7160.2500.8340.6130.1731

图3

评价指标间相关性分析"

表2

沥青路面性能指标的方差贡献率"

成分初始特征值提取载荷平方和
总计方差百分比累积 %总计方差百分比累积 %
12.11142.22442.2242.11142.22442.224
21.16523.29065.5141.16523.29065.514
31.03719.73585.2491.03719.73585.249
40.58510.69395.942---
50.2034.058100.000---

表3

测试集主成分数据"

路段F1F2F3标签
1-2.299-1.289-0.9793
2-0.5090.0651.1741
30.1041.141-1.0762
41.423-2.045-0.6291
5-0.0840.324-0.9042
60.971-0.8440.0031
7-0.1172.2851.3782
80.7600.4020.6281
9-4.018-1.534-0.1523
101.2350.0820.4111
111.295-1.673-0.4601
120.6710.4020.7461
13-2.4581.5201.6691
140.674-0.0370.5311
15-0.1730.960-2.0032
160.9910.0830.4551
17-0.4690.2660.2262
18-0.465-0.1731.0051
191.3770.1300.4141
201.089-0.0650.3331

图4

适应度曲线"

图5

评价结果对比图"

1 Chen W, Zheng M L. Multi-objective optimization for pavement maintenance and rehabilitation decision-making: a critical review and future directions[J]. Automation in Construction, 2021, 130: No.103840.
2 Cristina T M, Eugenio P, Víctor Y. Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions[J]. Journal of Cleaner Production, 2017, 148: 90-102.
3 . 公路技术状况评定标准 [S].
4 Pedro M, Maria L A, Eduardo F, et al. Machine learning approach for pavement performance prediction[J]. International Journal of Pavement Engineering, 2021, 22(3): 341-354.
5 周育名, 李金明, 李平, 等. 考虑公路等级的沥青路面性能衰变预测方法[J]. 中外公路, 2019, 39(1):34-39.
Zhou Yu-ming, Li Jin-ming, Li Ping, et al. Performance decay prediction method of asphalt pavement considering highway grade[J]. Journal of China & Foreign Highway, 2019, 39(1): 34-39.
6 Wang K, Qiang L. Gray clustering-based pavement performance evaluation[J]. Journal of Transportation Engineering, 2010, 136(1): 38-44.
7 宋俊敏, 李明, 范虎彪, 等. 基于BP神经网络的路面使用性能评价方法研究[J]. 公路, 2008(12): 140-144.
Song Jun-min, Li Ming, Fan Hu-biao, et al. Study on pavement performance evaluation method based on BP neural network[J]. Highway, 2008(12): 140-144.
8 刘艳, 康海贵, 孙敏. 基于遗传算法的模糊优选神经网络路面性能评价模型[J]. 大连理工大学学报, 2010, 50(1):117-122.
Liu Yan, Kang Hai-gui, Sun Min. Genetic algorithm-based fuzzy optimization neural network model for pavement performance evaluation[J]. Journal of Dalian University of Technology, 2010, 50(1):117-122.
9 周园园,亓建荣,周俊昌,等. 离散Hopfield 神经网络在沥青路面使用性能评价中的应用[J]. 重庆交通大学学报:自然科学版, 2012, 31(5):970-973.
Zhou Yuan-yuan, Qi Jian-rong, Zhou Jun-chang, et al. Pavement performance evaluation by discrete Hopfield neural network[J]. Journal of Chongqing Jiaotong University (Natural Science), 2012, 31(5):970-973.
10 王小凤,高攀科,王进玺. 基于混合遗传神经网络的高速公路沥青路面使用性能评价方法研究[J]. 公路工程, 2017, 42(4): 219-222.
Wang Xiao-feng, Gao Pan-ke, Wang Jin-xi. Study on evaluation method of expressway asphalt pavement performance based on hybrid genetic neural network[J]. Highway Engineering, 2017, 42(4): 219-222.
11 Yan K Z, Zhang Z. Research in analysis of asphalt pavement performance evaluation based on PSO-SVM[J]. Applied Mechanics and Materials, 2011,97/98: 203-207.
12 Ahmad A S, Hassan M Y, Abdullah M P, et al. A review on applications of ANN and SVM for building electrical energy consumption forecasting[J]. Renewable and Sustainable Energy Reviews, 2014, 33:102-109.
13 Subasi A, Gursoy M. EEG signal classification using PCA, ICA, LDA and support vector machines[J]. Expert Systems with Applications, 2010, 37(12): 8659-8666.
14 Li Z, Zhang J P, Liu T, et al. Using PSO-SVR algorithm to predict asphalt pavement performance[J]. Journal of Performance of Constructed Facilities, 2021, 35(6): 1-12.
15 刘丹, 刘方, 许彦平. 基于MIV-PSO-BPNN的光伏出力短期预测[J]. 太阳能学报, 2022, 43(6): 94-98.
Liu Dan, Liu Fang, Xu Yan-ping. Short-term photovoltaic power forecasting based on MIV-PSO-BPNN model[J]. Acta Energiae Solaris Sinica, 2022, 43(6): 94-98.
16 管仁初, 贺宝润, 梁艳春, 等.基于亲缘关系选择的粒子群优化算法[J]. 吉林大学学报:工学版, 2022, 52(8): 1842-1849.
Guan Ren-chu, He Bao-run, Liang Yan-chun, et al. Particle swarm optimization algorithm based on kinship selection[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(8): 1842-1849.
17 Sujay R N, Paresh C D. Support vector machine applications in the field of hydrology: a review[J]. Applied Soft Computing, 2014, 19: 372-386.
[1] 龙恩深,班光泽. 基于小波包信包提取的空调制冷压缩机怠速噪声诊断算法[J]. 吉林大学学报(工学版), 2023, 53(7): 1929-1934.
[2] 杨柳,王创业,王梦言,程阳. 设置自动驾驶小客车专用车道的六车道高速公路交通流特性[J]. 吉林大学学报(工学版), 2023, 53(7): 2043-2052.
[3] 周正峰,于晓涛,陶雅乐,郑茂,颜川奇. 基于灰色关联分析的树脂与弹性体高黏沥青高温性能评价[J]. 吉林大学学报(工学版), 2023, 53(7): 2078-2088.
[4] 田野,李楠楠,刘君巍,姜生元,王储,张伟伟. 基于支持向量机的模拟月壤临界尺度颗粒切削负载识别[J]. 吉林大学学报(工学版), 2023, 53(7): 2143-2151.
[5] 马涛,马源,黄晓明. 基于多元非线性回归的智能压实关键参数最优解[J]. 吉林大学学报(工学版), 2023, 53(7): 2067-2077.
[6] 黄晓明,赵润民. 道路交通基础设施韧性研究现状及展望[J]. 吉林大学学报(工学版), 2023, 53(6): 1529-1549.
[7] 司春棣,崔亚宁,许忠印,凡涛涛. 层间粘结失效后桥面沥青铺装层细观力学行为分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1719-1728.
[8] 赵晓康,胡哲,张久鹏,裴建中,石宁. 基于光纤传感技术的路面结冰智能监测研究进展[J]. 吉林大学学报(工学版), 2023, 53(6): 1566-1579.
[9] 郑睢宁,何锐,路天宇,徐紫祎,陈华鑫. RET/胶粉复合改性沥青制备及其混合料性能评价[J]. 吉林大学学报(工学版), 2023, 53(5): 1381-1389.
[10] 刘洋,刘吉成. 基于大数据与粒子群的清洁能源协同优化调度方法[J]. 吉林大学学报(工学版), 2023, 53(5): 1443-1448.
[11] 魏海斌,韩栓业,毕海鹏,刘琼辉,马子鹏. 智能感知道路主动除冰雪系统及实验技术[J]. 吉林大学学报(工学版), 2023, 53(5): 1411-1417.
[12] 杨帆,李琛琛,李盛,刘海伦. 温缩作用下双层连续配筋混凝土路面配筋率设计参数对比分析[J]. 吉林大学学报(工学版), 2023, 53(4): 1122-1132.
[13] 关博文,邸文锦,王发平,吴佳育,张硕文,贾治勋. 干湿循环与交变荷载作用下混凝土硫酸盐侵蚀损伤[J]. 吉林大学学报(工学版), 2023, 53(4): 1112-1121.
[14] 刘状壮,张有为,季鹏宇,Abshir Ismail Yusuf,李林,郝亚真. 电热型融雪沥青路面传热特性研究[J]. 吉林大学学报(工学版), 2023, 53(2): 523-530.
[15] 吴剑,许斌. 基于CEEMDAN理论的堆积层滑坡位移区间预测模型及仿真[J]. 吉林大学学报(工学版), 2023, 53(2): 562-568.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!