吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (11): 2636-2643.doi: 10.13229/j.cnki.jdxbgxb20210391

• 交通运输工程·土木工程 • 上一篇    

考虑旧水泥路面接缝传荷能力的超薄罩面力学特性

叶奋1(),胡诗园2   

  1. 1.同济大学 道路与交通工程教育部重点实验室,上海 201804
    2.辽宁省交通规划设计院有限责任公司,沈阳 110166
  • 收稿日期:2021-04-30 出版日期:2022-11-01 发布日期:2022-11-16
  • 作者简介:叶奋(1970-),男,教授,博士生导师. 研究方向: 道路工程结构与材料. E-mail:yefen@tongji.edu.cn
  • 基金资助:
    浙江省公路与运输管理中心科技计划项目(2020H10)

Mechanical properties of ultra⁃thin overlay considering load transfer capacity of old cement pavement joints

Fen YE1(),Shi-yuan HU2   

  1. 1.Key Laboratory of Road and Traffic Engineering of Ministry of Education,Tongji University,Shanghai 201804,China
    2.Liaoning Provincial Transportation Planning and Design Institute Co.,Ltd.,Shenyang 110166,China
  • Received:2021-04-30 Online:2022-11-01 Published:2022-11-16

摘要:

为研究不同接缝传荷能力的旧水泥路面加铺超薄沥青罩面的力学特性,利用ABAQUS建立有限元模型对超薄罩面层底接缝中心处进行应力分析,采用灰色关联度分析研究不同因素对应力的影响程度,并对超薄罩面疲劳开裂寿命进行预估。研究表明:随着超薄罩面厚度增加,第一主应力随之增加,最大剪应力和等效应力均随之降低;3种应力均随超薄罩面模量和车辆荷载的增加而呈线性增加,随水泥路面接缝传荷能力的增加而显著降低;层间接触状态对超薄罩面的最大剪应力具有显著影响;各因素对3种应力的影响程度排序为车辆荷载>超薄罩面模量>接缝传荷能力>层间接触状态>超薄罩面厚度;接缝传荷能力的增加能显著提高超薄罩面的疲劳开裂寿命,且二者呈幂函数关系;在超薄罩面加铺前应依据交通荷载控制旧水泥路面接缝能力。

关键词: 道路工程, 水泥路面, 接缝传荷能力, 超薄罩面, 力学特性

Abstract:

In order to study the mechanical characteristics of ultra-thin asphalt overlay on old cement pavement of different joint load transfer capacity, the finite element model is established to analyze the stress at the center of joint at the bottom of asphalt overlay by ABAQUS. The results show that the first principal stress increases, and the maximum shear stress and equivalent stress decrease with the increase of ultra-thin overlay thickness. The three kinds of stresses increase linearly with the increase of the ultra-thin overlay modulus and vehicle load, and decrease with the increase of the joint load transfer capacity. The interlamination contact states have significant effects on the maximum shear stress of ultra-thin overlay. The order of the influence degree of factors are as follows: vehicle load, ultra-thin overlay modulus, joint load transfer capacity, interlamination contact state, ultra-thin overlay thickness. The increase of the joint load transfer capacity can significantly improve the fatigue crack life of the ultra-thin overlay, and the relationship between them is according to power function. The joint load transfer capacity of old cement pavement should be controlled according to the traffic load before ultra-thin overlay.

Key words: road engineering, cement pavement, joint load transfer capacity, ultra-thin overlay, mechanical properties

中图分类号: 

  • U416.2

图1

接缝虚拟材料层模量与接缝传荷能力关系"

表1

不同接缝传荷能力下的虚拟材料层模量"

接缝传荷能力/%虚拟材料层模量/MPa
6017.6
6525.1
7032.8
7541.9
8075.7
85228.7
90502.5

表2

各结构层计算参数"

结构层厚度/m弹性模量/MPa泊松比
超薄罩面层0.015~0.3800~1 6000.25
水泥路面0.2431 0000.15
地基91800.35

图2

计算点应力随超薄罩面厚度变化规律"

图3

计算点应力随超薄罩面模量变化规律"

表3

1.5 cm厚超薄罩面应力与轴载的线性关系"

接缝传荷 能力/%σ1-Fτmax-Fσe-F
kbkbkb
601.1×10-3-2×10-59.6×10-3-5×10-48.5×10-3-4×10-4
650.9×10-3-2×10-59.1×10-3-3×10-48.0×10-3-3×10-4
700.7×10-3-1×10-58.6×10-3-1×10-47.7×10-3-2×10-4
750.6×10-3-0.8×10-58.2×10-3-0.2×10-47.3×10-3-1×10-4
800.4×10-3-0.6×10-57.2×10-3-0.2×10-46.4×10-3-0.1×10-4
850.1×10-3-0.5×10-65.0×10-3-0.2×10-44.4×10-3-0.1×10-4
900.5×10-4-0.1×10-73.4×10-3-0.2×10-43.0×10-3-0.1×10-4

表4

2.0 cm厚超薄罩面应力与轴载的线性关系"

接缝传荷 能力/%σ1-Fτmax-Fσe-F
kbkbkb
601.5×10-3-2×10-59.0×10-3-4×10-47.9×10-3-3×10-4
651.3×10-3-2×10-58.4×10-3-3×10-47.4×10-3-2×10-4
701.1×10-3-1×10-57.9×10-3-2×10-47.0×10-3-2×10-4
750.9×10-3-1×10-57.5×10-3-1×10-46.6×10-3-1×10-4
800.6×10-3-0.8×10-56.4×10-3-0.4×10-45.7×10-3-0.1×10-4
850.2×10-3-0.8×10-54.3×10-3-0.1×10-43.8×10-3-0.4×10-5
900.8×10-4-0.4×10-63.0×10-3-0.2×10-42.6×10-3-0.8×10-4

表5

2.5 cm厚超薄罩面应力与轴载的线性关系"

接缝传荷 能力/%σ1-Fτmax-Fσe-F
kbkbkb
601.7×10-3-1×10-58.3×10-3-3×10-47.3×10-3-3×10-4
651.4×10-3-1×10-57.8×10-3-2×10-46.8×10-3-2×10-4
701.2×10-3-0.9×10-57.3×10-3-1×10-46.4×10-3-1×10-4
751×10-3-1×10-56.9×10-3-1×10-46.1×10-3-0.9×10-4
800.7×10-3-0.9×10-55.9×10-3-0.4×10-45.2×10-3-0.3×10-4
850.2×10-3-0.2×10-53.9×10-3-0.1×10-43.5×10-3-0.4×10-5
900.1×10-4-0.7×10-62.7×10-3-0.2×10-42.4×10-3-0.9×10-5

图4

计算点应力随旧水泥路面接缝传荷能力变化规律"

图5

不同层间接触状态下的计算点应力情况"

图6

3种应力与各影响因素的灰色关联度"

表6

超薄沥青罩面疲劳开裂寿命"

超薄罩面 厚度/cm接缝传荷能力%沥青罩面层底最大水平拉应变/με疲劳开裂 寿命/次
1.560169.685 789 663
65155.408 207 794
70145.5610 641 677
75136.3213 806 559
80134.5814 531 053
2.060140.9812 077 103
65138.8912 814 872
70137.0913 497 956
75134.4314 589 640
80130.6316 349 092
2.560139.2112 700 217
65136.2913 813 686
70134.0314 765 265
75131.7615 800 350
80126.2518 719 387

图7

超薄沥青罩面疲劳开裂寿命变化规律"

1 Minhoto M J C, Pais J C, Pereira P A A. The temperature effect on the reflective cracking of asphalt overlays[J]. Road Materials and Pavement Design, 2008, 9(4): 615-632.
2 Chen D H, Won M. CAM and SMA mixtures to delay reflective cracking on PCC pavements[J]. Construction and Building Materials, 2015, 96: 226-237.
3 Rao S, Darter M, Tompkins D, et al. Composite pavement systems, Volume 1: HMA/PCC composite pavements[R]. Washington DC: The National Academies Press, 2013.
4 孙红军,谢晓杰,王永贵.基于ANSYS的旧水泥混凝土路面沥青加铺层应力状态研究[J]. 公路工程, 2020, 45(1): 173-177, 211.
Sun Hong-jun, Xie Xiao-jie, Wang Yong-gui. Research on stress state of asphalt overlay on old cement concrete pavement based on ANSYS[J]. Highway Engineering, 2020, 45(1): 173-177, 211.
5 Decker D S, Hansen K R. Design and construction of HMA overlays on rubblized PCC pavements: state of the practice[C]∥Transportation Research E-Circular E-C087: Rubblization of Portland Cement Concrete Pavements, Washington DC, USA, 2006: 2-3.
6 程培峰, 林宏. 基于Abaqus的旧水泥混凝土路面加铺沥青层结构的力学研究[J]. 公路工程, 2017, 42(1): 9-12, 30.
Cheng Pei-feng, Lin Hong. Based on abaqus of paving asphalt layer structure of old cement concrete pavement mechanics[J]. Highway Engineering,2017, 42(1): 9-12, 30.
7 班游, 蒋倩灵香, 杨建军. 水泥混凝土路面加铺沥青层结构应力分析[J]. 长沙理工大学学报: 自然科学版, 2019, 16(4): 64-72.
Ban You, Jiang Qian-ling-xiang, Yang Jian-jun. Stress analysis of asphalt layer on cement concrete pavement[J]. Journal of Changsha University of Science and Technology(Natural Science), 2019, 16(4):64-72.
8 李淑明, 许志鸿, 蔡喜棉. 土工织物对复合式路面结构内力影响分析[J]. 中国公路学报, 2006(1):28-31.
Li Shu-ming, Xu Zhi-hong, Cai Xi-mian. Analysis of impact of geo textile on stress of composite pavement structure[J]. China Journal of Highway and Transport, 2006(1): 28-31.
9 李淑明, 蔡喜棉, 许志鸿. 防治复合式路面的反射裂缝技术研究[J]. 同济大学学报: 自然科学版, 2005(12): 1616-1620.
Li Shu-ming, Cai Xi-mian, Xu Zhi-hong. Study on technology of retarding reflective crackings of composite pavement overlaid with asphalt concrete[J]. Journal of Tongji University(Natural Science), 2005(12):1616-1620.
10 Zhou F, Scullion T. Mix design, construction, and performance of a thin HMA overlay on pumphrey drive, fort worth, TX[R]. Washington DC: The National Academies Press, 2008.
11 虞将苗, 陈富达, 彭馨彦, 等. 高韧超薄沥青磨耗层在港珠澳大桥珠海人工岛通道上的应用[J]. 清华大学学报: 自然科学版, 2020, 60(1): 48-56.
Yu Jiang-miao, Chen Fu-da, Peng Xin-yan, et al. High-toughness, ultra-thin friction course for the channel on the artificial island of the Hong Kong-Zhuhai-Macao bridge[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(1): 48-56.
12 梁春雨, 马俊琛, 谭国金, 等. 水稳碎石基层层间状态对路面结构力学响应的影响[J]. 吉林大学学报: 工学版, 2022, 52(5): 1063-1070.
Liang Chun-yu, Ma Jun-chen, Tan Guo-jin, et al. Influence of interlayer state of cement stabilized macadam on mechanical response of pavement structure [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(5): 1063-1070.
13 肖兴强.水泥混凝土路面板底脱空和接缝传荷能力的关系[D].成都:西南交通大学土木工程学院,2007.
Xiao Xing-qiang. Relationship between voids beneath slab and the load transfer efficiency[D]. Chengdu: School of Civil Engineering, Southwest Jiaotong University, 2007.
14 谭悦. 机场水泥混凝土道面脱空响应及判定方法[D]. 上海: 同济大学交通运输工程学院, 2011.
Tan Yue. Response and identification method of void beneath airport cement concrete pavement[D]. Shanghai: School of Transportation Engineering, Tongji University, 2011.
15 刘丹. 水泥混凝土路面接缝及结构优化研究[D]. 武汉: 武汉理工大学交通学院, 2003.
Liu Dan. Researches on optimum joint and structure of cement concrete pavement[D]. Wuhan: School of Transportation, Wuhan University of Technology, 2003.
16 罗勇, 袁捷. 三维有限元法对水泥混凝土道面接缝传荷作用的模拟方法研究[J]. 公路交通科技, 2013, 30(3): 32-38.
Luo Yong, Yuan Jie. Research on simulation method for load transfer of joints of cement concrete pavement by 3D finite element method[J]. Journal of Highway and Transportation Research and Development, 2013, 30(3): 32-38.
17 代劲, 胡峰, 刘歆. 基于数据分布的快速灰关联分析[J].吉林大学学报: 工学版, 2015, 45(1):283-290.
Dai Jin, Hu Feng, Liu Xin. Novel rapid grey incidence analysis method based on data distribution[J]. Journal of Jilin University(Engineering and Technology Edition), 2015, 45(1): 283-290.
18 . 公路沥青路面设计规范 [S].
[1] 郭庆林,刘强,吴春利,李黎丽,李懿明,刘富春. 导电沥青及混合料裂缝局部温度场及愈合效果[J]. 吉林大学学报(工学版), 2022, 52(6): 1386-1393.
[2] 时成林,王勇,吴春利,宋文祝. 路堤挡土墙主动土压力计算方法修正[J]. 吉林大学学报(工学版), 2022, 52(6): 1394-1403.
[3] 姚玉权,仰建岗,高杰,宋亮. 基于性能-费用模型的厂拌再生沥青混合料优化设计[J]. 吉林大学学报(工学版), 2022, 52(3): 585-595.
[4] 夏全平,高江平,罗浩原,张其功,李志杰,杨飞. 用于高模量沥青砼的复合改性硬质沥青低温性能[J]. 吉林大学学报(工学版), 2022, 52(3): 541-549.
[5] 于晓贺,罗蓉,柳子尧,黄婷婷,束裕. 沥青路面典型裂缝湿度场数值模拟[J]. 吉林大学学报(工学版), 2022, 52(10): 2343-2351.
[6] 杨彦海,崔宏,杨野,张怀志,刘赫. 冻融循环作用对非饱和乳化沥青冷再生混合料性能的影响[J]. 吉林大学学报(工学版), 2022, 52(10): 2352-2359.
[7] 冉武平,陈慧敏,李玲,冯立群. 干湿循环下粗粒土回弹模量演变规律及模型预估和修正[J]. 吉林大学学报(工学版), 2021, 51(6): 2079-2086.
[8] 董伟智,张爽,朱福. 基于可拓层次分析法的沥青混合料路用性能评价[J]. 吉林大学学报(工学版), 2021, 51(6): 2137-2143.
[9] 文畅平,任睆遐. 基于Lade模型的生物酶改良膨胀土双屈服面本构关系[J]. 吉林大学学报(工学版), 2021, 51(5): 1716-1723.
[10] 许哲谱,杨群. 基于实时路况地图的短期养护作业开始时间优化[J]. 吉林大学学报(工学版), 2021, 51(5): 1763-1774.
[11] 王元元,孙璐,刘卫东,薛金顺. 测量路面三维纹理双目重构算法的约束改进[J]. 吉林大学学报(工学版), 2021, 51(4): 1342-1348.
[12] 彭勇,杨汉铎,陆学元,李彦伟. 基于离散元法的空隙特征对沥青混合料虚拟剪切疲劳寿命的影响[J]. 吉林大学学报(工学版), 2021, 51(3): 956-964.
[13] 朱伟刚,朱超,张亚球,魏海斌. 基于卷积格网曲面拟合滤波算法的数字高程模型构建及质量评价[J]. 吉林大学学报(工学版), 2021, 51(3): 1073-1080.
[14] 程永春,李赫,李立顶,王海涛,白云硕,柴潮. 基于灰色关联度的矿料对沥青混合料力学性能的影响分析[J]. 吉林大学学报(工学版), 2021, 51(3): 925-935.
[15] 宫亚峰,逄蕴泽,王博,谭国金,毕海鹏. 基于吉林省路况的新型预制装配式箱涵结构的力学性能[J]. 吉林大学学报(工学版), 2021, 51(3): 917-924.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!