吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (6): 1819-1832.doi: 10.13229/j.cnki.jdxbgxb.20230081

• 交通运输工程·土木工程 • 上一篇    

玄武岩纤维活性粉末混凝土与钢绞线粘结滑移过程声学特性表征

宫亚峰1(),吴树正1,毕海鹏1(),周冬明2,谭国金1,黄晓明3   

  1. 1.吉林大学 交通学院,长春 130022
    2.广西壮族自治区玉林公路发展中心,广西 玉林 537002
    3.东南大学 交通学院,南京 210018
  • 收稿日期:2023-01-30 出版日期:2023-06-01 发布日期:2023-07-23
  • 通讯作者: 毕海鹏 E-mail:gongyf@jlu.edu.cn;bihp@jlu.edu.cn
  • 作者简介:宫亚峰(1977-),男,教授,博士.研究方向:桥梁结构健康监测理论及应用.E-mail:gongyf@jlu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2021YFB2600604);吉林省交通运输科技项目(2021-1-1);黑龙江交通运输厅重点项目(2022-1);吉林省科技发展计划项目(20230402048GH);吉林省教育厅科研项目(JJKH20211113KJ);广西玉林市科学研究与技术开发计划项目(202235115)

Acoustic characterization of bond⁃slip process between basalt fiber reactive powder concrete and steel strand

Ya-feng GONG1(),Shu-zheng WU1,Hai-peng BI1(),Dong-ming ZHOU2,Guo-jin TAN1,Xiao-ming HUANG3   

  1. 1.College of Transportation,Jilin University,Changchun 130022,China
    2.Yulin Highway Development Center of Guangxi Zhuang Autonomous Region,Yulin 537002,China
    3.School of Transportation,Southeast University,Nanjing 210018,China
  • Received:2023-01-30 Online:2023-06-01 Published:2023-07-23
  • Contact: Hai-peng BI E-mail:gongyf@jlu.edu.cn;bihp@jlu.edu.cn

摘要:

针对预应力锚索因粘结失效而导致的高边坡失稳问题,提出将预应力锚索与高性能材料结合应用的方法以提高边坡抗灾韧性。首先,开展了预应力钢绞线与玄武岩纤维活性粉末混凝土(BFRPC)中心拉拔试验,研究了公称直径为15.2 mm的钢绞线在两种浆体材料(BFRPC、M40普通水泥砂浆)下的钢绞线粘结性能,总结其破坏形式;其次,基于声发射特征参数的分布规律,识别应力状态下钢筋混凝土材料的损伤过程;再次,通过对上升时间/振幅-平均频率(RA-AF)值进行对比,明确钢绞线-混凝土拉拔过程中的损伤模式;最后,依据Ib值识别不同应力状态下钢绞线混凝土材料裂纹发展的各个阶段。研究结果表明:3个阶段的能量、幅值变化规律与试件内部裂纹的产生、扩展等损伤过程联系紧密;通过RA-AF分析得出,剪切裂纹主要发生在界面混凝土附近,而拉伸裂纹的宏观体现为垂直于加载方向上的裂纹;Ib值波动差至0.25时可以将其视为一个预警值,以警告预应力钢绞线-混凝土材料即将发生劈裂破坏。

关键词: 岩土工程, 玄武岩纤维活性粉末混凝土, 声发射, 粘结滑移, 损伤模式分析

Abstract:

To address the problem of high slope instability due to bonding failure of prestressed anchor cables, the application of prestressed anchor cables in combination with high performance materials was proposed to improve slope resilience. Firstly, the pull-out tests of prestressed steel strands and Basalt Fiber Reactive Powder Concrete (BFRPC) were carried out in the laboratory. The bonding properties of steel strands with a nominal diameter of 15.2 mm under two slurry materials (BFRPC, M40 ordinary cement mortar) were studied, and the failure modes were summarized. Then, based on the distribution law of characteristic parameters, the damage process of reinforced concrete materials under stress state was identified. Secondly, by comparing the RA-AF values, the damage mode of steel strand-concrete during drawing process was clarified. Finally, according to the Ib-value, the stages of crack development of steel strand concrete under different stress states were identified. The results show that: the energy and amplitude law of the three stages are closely related to the damage process such as the generation and expansion of cracks inside the specimen. Through RA-AF analysis, it is concluded that shear cracks mainly occur near the interface concrete, while the macroscopic manifestation of tensile cracks is cracks perpendicular to the loading direction. When the fluctuation difference of Ib-value reaches 0.25, it can be regarded as an early warning value to warn that the prestressed steel strand-concrete material is about to split.

Key words: geotechnical engineering, basalt fiber reactive powder concrete(BFRPC), acoustic emission, bond-slip, damage analysis

中图分类号: 

  • U417.1

图1

试件各组件尺寸"

图2

试验模具"

图3

BFRPC制备流程"

表1

试件参数"

试件编号d/mm浆体类型锚固长度l/mm数量
BFRPC-115.2BFRPC1003
BFRPC-215.2BFRPC1003
BFRPC-315.2BFRPC1003
OCM-115.2OCM1003
OCM-215.2OCM1003
OCM-315.2OCM1003

图4

试验设备与测试"

图5

试件不同破坏形式"

表2

各试件粘结强度统计"

试件编号

破坏

形式

极限荷载/kN临界粘结应力τcr/MPa极限粘结应力τu/MPa
BFRPC-1-1拔出65.2910.7915.58
BFRPC-1-1拔出62.5910.2114.93
BFRPC-1-3拔出59.3210.1514.15
BFRPC-2-1拔出58.2310.9613.89
BFRPC-2-3拔出57.969.2613.83
BFRPC-2-3拔出59.209.8514.12
BFRPC-3-1拔出61.2210.6114.60
BFRPC-3-1拔出62.7310.6414.96
BFRPC-3-1拔出60.5810.1214.45
OCM-1-1拔出44.307.6110.57
OCM-1-2拔出46.527.8211.10
OCM-1-3拔出42.036.9510.03
OCM-2-1劈裂44.437.9510.60
OCM-2-2拔出45.287.1010.80
OCM-2-3拔出41.066.889.80
OCM-3-1拔出45.617.7010.88
OCM-3-2拔出45.287.6210.80
OCM-3-3拔出44.917.3110.71

图6

典型试件拉拔力-位移图"

图7

曲线分段示意图"

图8

BFRPC和OCM试件能量时程图"

图9

OCM和BFRPC试件幅值时程图"

图10

OCM和BFRPC试件RA-AF时间关系图"

图11

不同裂纹的宏观体现"

图12

OCM和BFRPC的Ib值( β =50,75,100)时程图"

1 Wang Qi, Xu Shuo, Xin Zhong-xin, et al. Mechanical properties and field application of constant resistance energy-absorbing anchor cable[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2022, 125: No.104526.
2 Jia Zhi-bo, Tao Lian-jin, Jin Bian, et al. Research on influence of anchor cable failure on slope dynamic response[J]. Soil Dynamics and Earthquake Engineering, 2022, 161: No.107435.
3 陈军, 梁文鹏, 应宏伟. 大直径水泥土锚索合理间距的试验与数值研究[J]. 岩土力学, 2018, 39(): 374-380.
Chen Jun, Liang Wen-peng, Ying Hong-wei. Experimental and numerical research on proper interval of large diameter soil-cement anchor cables[J]. Rock and Soil Mechanics, 2018, 39(Sup.2): 374-380.
4 梁颖. 用于结构健康监测的声发射传感器研究[D]. 太原:中北大学仪器与电子学院, 2022.
Liang Ying. Acoustic emission sensor research for structural health monitoring[D]. Taiyuan: School of Instrument and Electronics, North University of China, 2022.
5 储超群, 吴顺川, 曹振生, 等. 基于声发射技术的花岗岩破裂特征试验研究[J]. 中南大学学报: 自然科学版, 2021, 52(8): 2919-2932.
Chu Chao-qun, Wu Shun-chuan, Cao Zhen-sheng, et al. Experimental research on fracture characteristics of granite with acoustic emission technology[J]. Journal of Central South University(Science and Technology), 2021, 52(8): 2919-2932.
6 张云龙, 周刘光, 王静, 等. 冻融对粉砂土力学特性及路堤边坡稳定性的影响[J]. 吉林大学学报: 工学版, 2019, 49(5): 1531-1538.
Zhang Yun-long, Zhou Liu-guang, Wang Jing, et al. Effects of freeze-thaw cycles on mechanical properties of silty sand and subgrade slope stability[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1531-1538.
7 Abdulrahman P I, Bzeni D K. Bond strength evaluation of polymer modified cement mortar incorporated with polypropylene fibers[J]. Case Studies in Construction Materials, 2022, 17: No.e01387.
8 任爱武, 汪彦枢, 樊海柱, 等. 预应力锚索砂浆包裹体20年夹层未凝现象及其成因初探[J]. 岩石力学与工程学报, 2014, 33(): 3724-3729.
Ren Ai-wu, Wang Yan-shu, Fan Hai-zhu, et al. A phenomenon of anchorage grout interlayer without solidification in twenty years and its reasons analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(Sup.2): 3724-3729.
9 Peng Zhe-qi, Wang Xin, Zhou Jing-yang, et al. Reliability assessment of fiber-reinforced polymer cable-anchorage system[J]. Composite Structures, 2021, 273: No.114308.
10 杨立云, 林长宇, 张飞, 等. 玄武岩纤维对活性粉末混凝土受压破坏的影响[J]. 建筑材料学报, 2022, 25(5): 483-489.
Yang Li-yun, Lin Chang-yu, Zhang Fei, et al. Effect of basalt fiber on failure of reactive powder concrete under uniaxial compression[J]. Journal of Building Materials, 2022, 25(5): 483-489.
11 李福海, 高浩, 唐慧琪, 等. 短切玄武岩纤维混凝土基本性能试验研究[J]. 铁道科学与工程学报, 2022, 19(2): 419-427.
Li Fu-hai, Gao Hao, Tang Hui-qi, et al. Basic properties and shrinkage model of chopped basalt fiber concrete[J]. Journal of Railway Science and Engineering, 2022, 19(2): 419-427.
12 Wang Wen-hua, Zhu Jin-zhong, Cheng Xiao-jun. Numerical simulation of strength of basalt fiber permeable concrete based on CT technology[J]. Case Studies in Construction Materials, 2022, 17: No.e01348.
13 屈直. 基于指标体系的高陡边坡施工与运营安全风险评估方法研究[D]. 重庆: 重庆交通大学土木工程学院, 2019.
Qu Zhi. Study on safety risk assessment method for construction and operation of high and steep slope based on index system[D]. Chongqing: School of Civil Engineering, Chongqing Jiaotong University, 2019.
14 张旷怡. 基于高性能材料大型岩锚体系应用研究[D]. 长沙: 湖南大学土木工程学院, 2015.
Zhang Kuang-yi. Investigation on a large-scale ground anchor system with high performance materials[D]. Changsha: College of Civil Engineering, Hunan University, 2015.
15 吕翔. 季冻区玄武岩纤维活性粉末混凝土耐久性能和力学性能研究[D]. 长春: 吉林大学交通学院, 2021.
Lv Xiang. Research on durability and mechanical properties of basalt fiber reactive powder concrete in seasonal frozen area[D]. Changchun: College of Transportation, Jilin University, 2021.
16 Shan Wen-chen, Liu Jie-peng, Ding Yao, et. al . Assessment of bond-slip behavior of hybrid fiber reinforced engineered cementitious composites (ECC) and deformed rebar via AE monitoring[J]. Cement and Concrete Composites, 2021, 118: No.103961.
17 程东辉, 范永萱, 王彦松. RC 类活性粉末混凝土钢筋粘结-滑移本构模型[J]. 吉林大学学报: 工学版, 2021, 51(4): 1317-1330.
Cheng Dong-hui, Fan Yong-xuan, Wang Yan-song. Bond-slip constitutive model of steel bars and reactive powder concrete under standard curing[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1317-1330.
18 , 混凝土结构试验方法标准 [S].
19 , 普通混凝土拌合物性能试验方法标准 [S].
20 徐有邻. 钢筋混凝土粘滑移本构关系的简化模型[J]. 工程力学, 1997, 11: 55-60.
Xu You-lin. A simplified model of bond-slip constitutive relation of reinforced concrete[J]. Engineering Mechanics, 1997, 11: 55-60.
21 滕智明, 邹离湘. 反复荷载下钢筋混凝土构件的非线性有限元分析[J]. 土木工程学报, 1996, 10(2): 19-27.
Teng Zhi-ming, Zou Li-xiang. Nonlinear finite element aanlysis of rg members under reversed cyclic loading[J]. China Civil Engineering Journal, 1996, 10(2): 19-27.
22 宋加祥. 橡胶-玄武岩纤维复合改性混凝土单轴受压损伤特性研究[D]. 长春: 吉林大学交通学院, 2020.
Song Jiang-xiang. Research on damage characteristics of rubber-basalt fiber composite modified concrete under uniaxial compression[D]. Changchun: College of Transportation, Jilin University, 2020.
23 刘寒冰, 高鑫, 宫亚峰, 等. 表面处理对玄武岩纤维活性粉末混凝土力学性能的影响及断裂特性[J]. 吉林大学学报: 工学版, 2021, 51(3): 936-945.
Liu Han-bing, Gao Xin, Gong Ya-feng, et al. Influence of surface treatment on basalt fiber reactive powder concrete mechanical properties and fracture characteristics[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 936-945.
24 Aggelis D, Soulioti D, Barkoula N, et al. Influence of fiber chemical coating on the acoustic emission behavior of steel fiber reinforced concrete[J]. Cement and Concrete Composites, 2012, 34(1): 62-67.
25 Shiotani T, Yuyama S, Li Z W, et al. Application of AE improved b value to quantitative evaluation of fracture process in concrete materials[J]. Journal of Acoustic Emission, 2001(19): 118-133.
26 Smith W D. The b-value as an earthquake precursor[J]. Nature, 1981, 289(5794): 136-139.
27 Carpinteri A, Lacidogna G, Manuello A. The b-value analysis for the stabilityinvestigation of the ancient athena temple in syracuse[J]. Strain, 2011, 47: 243-253.
[1] 惠迎新,陈嘉伟. 基于改进遗传算法的挤扩支盘群桩优化方法[J]. 吉林大学学报(工学版), 2023, 53(7): 2089-2098.
[2] 毛亚娜,刘世忠,杏剑,杨华,焦峪波. 超高性能玻璃砂混凝土-高强钢筋粘结滑移特性及其声发射参数表征[J]. 吉林大学学报(工学版), 2023, 53(6): 1686-1694.
[3] 刘顺,唐小微,栾一晓. 可液化土阻尼系数对地铁结构地震响应的影响[J]. 吉林大学学报(工学版), 2023, 53(1): 159-169.
[4] 唐亮,司盼,崔杰,凌贤长,满孝峰. 液化微倾场地群桩地震反应分析拟静力方法[J]. 吉林大学学报(工学版), 2022, 52(4): 847-855.
[5] 姜屏,周琳,毛天豪,袁俊平,王伟,李娜. 水泥改性废弃泥浆损伤模型及时间效应[J]. 吉林大学学报(工学版), 2022, 52(12): 2874-2882.
[6] 刘寒冰,高鑫,宫亚峰,刘诗琪,李文俊. 表面处理对玄武岩纤维活性粉末混凝土力学性能的影响及断裂特性[J]. 吉林大学学报(工学版), 2021, 51(3): 936-945.
[7] 于江,赵志浩,秦拥军. 基于声发射和分形的钢筋混凝土受剪梁损伤[J]. 吉林大学学报(工学版), 2021, 51(2): 620-630.
[8] 张飞,朱玉明,杨尚川,王庶懋. 加筋土挡墙碳排放计算方法与减排性分析[J]. 吉林大学学报(工学版), 2021, 51(2): 631-637.
[9] 陶文斌,侯俊领,陈铁林,唐彬. 高预紧力后张法全长锚固支护力学分析[J]. 吉林大学学报(工学版), 2020, 50(2): 631-640.
[10] 高登辉,邢义川,郭敏霞,张爱军,王献涛,马保红. 非饱和重塑黄土⁃混凝土接触面修正双曲线模型[J]. 吉林大学学报(工学版), 2020, 50(1): 156-164.
[11] 古海东,罗春红. 疏排桩-土钉墙组合支护基坑土拱效应模型试验[J]. 吉林大学学报(工学版), 2018, 48(6): 1712-1724.
[12] 刘国华,黄平捷,杨金泉,刘远,周泽魁 . 基于高阶谱的混凝土材料断裂声发射特征提取[J]. 吉林大学学报(工学版), 2009, 39(03): 803-0808.
[13] 何舒, 马羽宽, 杨建波. 含不同缺陷的金属材料声发射特性[J]. 吉林大学学报(工学版), 2003, (4): 21-25.
[14] 李家林, 牛树, 马羽宽. 压力容器活性缺陷有害度的新评价方法[J]. 吉林大学学报(工学版), 2002, (2): 83-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!