吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (5): 1604-1616.doi: 10.13229/j.cnki.jdxbgxb.20230873

• 交通运输工程·土木工程 • 上一篇    下一篇

长沙压实黏土剪切特性及应力-应变关系表征

张安顺1,2(),付伟3,张军辉1,2(),高峰1,2   

  1. 1.长沙理工大学 公路工程教育部重点实验室,长沙 410114
    2.湘江实验室,长沙 410205
    3.中交第二公路勘察设计研究院有限公司,武汉 430056
  • 收稿日期:2023-08-18 出版日期:2025-05-01 发布日期:2025-07-18
  • 通讯作者: 张军辉 E-mail:cr11zhanganshun@163.com;zjhseu@csust.edu.cn
  • 作者简介:张安顺(1994-),男,高级工程师,博士. 研究方向:耐久性路基设计理论与方法.E-mail: cr11zhanganshun@163.com
  • 基金资助:
    国家自然科学基金项目(52025085);国家自然科学基金项目(52338009);湘江实验室重大项目(22XJ01009);中交第二公路勘察设计院科研项目(KJFZ-2019-041);湖南省研究生科研创新项目(CX20210748)

Shear properties and stress-strain relationships characterization of Changsha compacted clay

An-shun ZHANG1,2(),Wei FU3,Jun-hui ZHANG1,2(),Feng GAO1,2   

  1. 1.Key Laboratory for Highway Engineering of Ministry of Education,Changsha University of Science & Technology,Changsha 410114,China
    2.Xiangjiang Laboratory,Changsha 410205,China
    3.CCCC Second Highway Consultants Co. ,Ltd. ,Wuhan 430056,China
  • Received:2023-08-18 Online:2025-05-01 Published:2025-07-18
  • Contact: Jun-hui ZHANG E-mail:cr11zhanganshun@163.com;zjhseu@csust.edu.cn

摘要:

为研究路基压实黏土的剪切特性与应力-应变关系,以长沙黏土为例开展了不同压实度、含水率、加载速率、围压下的不固结不排水三轴试验。结果表明:弹性模量与极限强度均随压实度降低、含水率升高及围压减小呈衰减趋势,但与加载速率之间表现为无显著规律的小幅波动。建立了复杂条件下路基黏土的莫尔-库仑强度准则,以描述路基黏土强度随各个因素的变化规律。总黏聚力和总内摩擦角因压实度提高及含水率降低而大幅提高,且总黏聚力随加载速率的增加先减小后增大,总内摩擦角随加载速率的增加先增大后减小,但两者因加载速率改变导致的变化幅度较小。提出了长沙黏土应力-应变曲线的统一表征方法,可合理描述应变软化、稳定及硬化3种变形曲线。

关键词: 道路工程, 路基压实黏土, 应力-应变关系, 弹性模量, 极限强度, 抗剪强度指标

Abstract:

To investigate the shear properties and stress-strain relationships of subgrade compacted clay, a series of unconsolidated and undrained triaxial tests were carried out on Changsha clay under different degrees of compaction, moisture contents, loading rates and confining pressures. The results show that the elastic modulus and ultimate strength decay with the decrease of degree of compaction, the increase of moisture content and the decrease of confining pressure, but there is a slight fluctuation with the loading rate. The Mohr-Coulomb strength criterion of subgrade clay under complex conditions is established to describe the variation law of the strength of subgrade clay with various factors. The total cohesion and total internal friction angle increase significantly with the increase of degree of compaction and the decrease of moisture content. With the increase of loading rate, the total cohesion decreases first and then increases, and the total internal friction angle increases first and then decrease. However, the fluctuation amplitude of these two indexes is weak due to the change of loading rate. The unified characterization method on stress-strain curves of Changsha clay is proposed, which can reasonably describe the three types deformation curves with strain softening, stability and hardening.

Key words: road engineering, subgrade compacted clay, stress-strain relationship, elastic modulus, ultimate strength, shear strength parameter

中图分类号: 

  • TU411

表1

试验黏土基本工程参数"

液限

/%

塑限

/%

塑性

指数

最佳含

水率/%

最大干

密度/(g·cm-3

0.075 mm

通过率/%

比重
52.425.526.914.41.7367.72.66

表2

三轴试验方案"

压实度

/%

含水率/OMC

加载速率/

(%×min-1

围压

/kPa

1961.0(14.4%)0.7030、60、90、120
2931.0(14.4%)0.7030、60、90、120
3901.0(14.4%)0.7030、60、90、120
4871.0(14.4%)0.7030、60、90、120
5961.2(17.3%)0.7030、60、90、120
6961.4(20.2%)0.7030、60、90、120
7961.6(23.0%)0.7030、60、90、120
8961.2(17.3%)0.5030、60、90、120
9961.2(17.3%)0.8530、60、90、120
10961.2(17.3%)1.0030、60、90、120

图1

三轴试验流程"

图2

不同压实度下的应力-应变曲线"

图3

不同压实度下的破坏形态"

图4

不同含水率下的应力-应变曲线"

图5

不同含水率下的破坏形态"

图6

不同加载速率下的应力-应变曲线"

图7

不同加载速率下的破坏形态"

图8

不同影响因素下的弹性模量"

图9

不同影响因素下的极限强度"

表3

提出的极限强度预估模型验证结果"

数据来源abcdefgR2
本研究(黏土)4.97456.75-391.51-1.322.810.097.410.97
文献[8](黏土)4.880.190.85-91.99185.090.2224.390.93
文献[9](黏土)1.921.610.03-20.0446.720.094.940.99
文献[10](黏土)2.362.14-0.14-5.4913.020.326.710.98
文献[24](黏土)0.013.52-1.44-767.091386.480.2958.940.96
文献[25](砂土)8.661.47-0.29-72.61102.140.0526.060.85

图10

不同压实度下的莫尔半圆及抗剪强度包络线"

图11

不同含水率下的莫尔半圆及抗剪强度包络线"

图13

不同影响因素下的抗剪强度指标"

图14

修正双曲线模型参数的预测效果"

图15

长沙黏土应力-应变统一表征模型的验证结果"

[1] 张哲, 付伟, 张军辉, 等. 循环荷载下冻融路基黏土长期塑性行为[J]. 吉林大学学报: 工学版, 2023, 53(6): 1790-1798.
Zhang Zhe, Fu Wei, Zhang Jun-hui, et al. Long⁃term characterising plastic behavior of thawed subgrade clay under cyclic loads[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(6): 1790-1798.
[2] Yang K H, Uzuoka R, Thuo J, et al. Coupled hydro-mechanical analysis of two unstable unsaturated slopes subject to rainfall infiltration[J]. Engineering Geology, 2017, 216: 13-30.
[3] Nhan T T, Matsuda H, Sato H, et al. Pore water pressure and settlement of clays under cyclic shear: effects of soil plasticity and cyclic shear direction[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2022, 148(2): No.04021185.
[4] Zhang J H, Li F, Zeng L, et al. Numerical simulation of the moisture migration of unsaturated clay embankments in southern China considering stress state[J]. Bulletin of Engineering Geology and the Environment, 2021, 80: 11-24.
[5] 李崛, 张安顺, 张军辉, 等. 级配碎石基层结构动力响应模型测试及数值分析[J]. 吉林大学学报: 工学版, 2023, 53(6): 1782-1789.
Li Jue, Zhang An-shun, Zhang Jun-hui, et al. Model testing and numerical analysis of dynamic response of graded crushed rock base structure[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(6): 1782-1789.
[6] 刘寒冰, 张互助, 王静. 冻融及含水率对压实黏质土力学性质的影响[J]. 岩土力学, 2018, 39(1): 158-164.
Liu Han-bing, Zhang Hu-zhu, Wang Jing. Effect of freeze-thaw and water content on mechanical properties of compacted clayey soil[J]. Rock and Soil Mechanics, 2018, 39(1): 158-164.
[7] Xu W B, Wang X C. Effect of freeze-thaw cycles on mechanical strength and microstructure of silty clay in the Qinghai-Tibet plateau[J]. Journal of Cold Regions Engineering, 2022, 36(1):No.04021018.
[8] 龙万学, 陈开圣, 肖涛, 等. 非饱和红黏土三轴试验研究[J]. 岩土力学, 2009, 30(): 28-33.
Long Wan-xue, Chen Kai-sheng, Xiao Tao, et al. Research of general triaxial test for unsaturated red clay[J]. Rock and Soil Mechanics, 2009, 30(Sup.2): 28-33.
[9] 周春梅, 程月, 王勇, 等. 压实黄土抗剪强度参数影响因素研究[J]. 防灾减灾工程学报, 2018, 38(2): 258-264.
Zhou Chun-mei, Cheng Yue, Wang Yong, et al. Study on influencing factors of shear strength parameters of compacted loess[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(2): 258-264.
[10] Wei C B, Apel D, Zhang Y H. Shear behavior of ultrafine magnetite tailings subjected to freeze-thaw cycles[J]. International Journal of Mining Science and Technology, 2019, 29: 609-616.
[11] 詹良通, 孙倩倩, 郭晓刚, 等. 花岗岩风化料弃土快速堆填过程中不排水抗剪强度评估[J]. 岩土力学, 2021, 42(1): 50-58.
Zhan Liang-tong, Sun Qian-qian, Guo Xiao-gang, et al. Estimation of undrained shear strength of completely decomposed granite waste during rapid landfilling[J]. Rock and Soil Mechanics, 2021, 42(1): 50-58.
[12] Zhang A S, Zhang J H, Peng J H, et al. Effect of freeze-thaw cycles on mechanical properties of an embankment clay: laboratory tests and model evaluations[J]. Frontiers in Earth Science, 2022, 10: 865348.
[13] 刘红玫, 钟秀梅. 黄土抗剪强度的三轴试验[J]. 地震工程学报, 2011, 33(): 243-245.
Liu Hong-mei, Zhong Xiu-mei. Triaxial test on the shearing strength of loess[J]. China Earthquake Engineering Journal, 2011, 33(Sup.1): 243-245.
[14] 邓亚虹, 魏宝华, 王晗, 等. 原状黄土变形与强度特性的加载速率效应[J]. 中国公路学报, 2016, 29(7): 22-29.
Deng Ya-hong, Wei Bao-hua, Wang Han, et al. Loading rate effect on deformation and strength characteristics of undisturbed loess[J]. China Journal of Highway and Transport, 2016, 29(7): 22-29.
[15] Toyota H, Takada S, Susami A. Rate dependence on mechanical properties of unsaturated cohesive soil with stress-induced anisotropy[J]. Soils and Foundations, 2019, 59: 1013-1023.
[16] 林波, 张锋, 冯德成, 等. 冻融循环作用后饱和黏土的应变速率效应试验研究[J]. 岩土力学, 2017, 38(7): 2007-2014.
Lin Bo, Zhang Feng, Feng De-cheng, et al. Experimental investigation on strain rate effects of saturated clay subjected to freeze-thaw cycles[J]. Rock and Soil Mechanics, 2017, 38(7): 2007-2014.
[17] Zhang J H, Ding L, Zheng J L, et al. Deterioration mechanism and rapid detection of performances of an existing subgrade in southern China[J]. Journal of Central South University, 2020, 27(7): 2134-2147.
[18] 郑健龙, 张锐. 公路膨胀土路基变形预测与控制方法[J]. 中国公路学报, 2015, 28(3): 1-10.
Zheng Jian-long, Zhang Rui. Prediction and control method for deformation of highway expansive soil subgrade[J]. China Journal of Highway and Transport, 2015, 28(3): 1-10.
[19] 姚占勇, 蒋红光, 孙梦林, 等. 细粒土路基平衡密度状态分析[J]. 中国公路学报, 2020, 33(9): 94-103.
Yao Zhan-yong, Jiang Hong-guang, Sun Meng-lin, et al. Analysis of equilibrium density state of highway subgrade with fine soils[J]. China Journal of Highway and Transport, 2020, 33(9): 94-103.
[20] Liu B H, Kong L W, Xu G F, et al. Effects of three-dimensional cyclic stresses on permanent deformation of natural undisturbed clay[J]. International Journal of Geomechanics, 2022, 22(12):04022220.
[21] 臧濛, 孔令伟, 郭爱国. 静偏应力下湛江结构性黏土的动力特性[J]. 岩土力学, 2017, 38(1): 33-40.
Zang Meng, Kong Ling-wei, Guo Ai-guo. Effects of static deviatoric stress on dynamic characteristics of Zhanjiang structured clay[J]. Rock and Soil Mechanics, 2017, 38(1): 33-40.
[22] 王家全, 畅振超, 唐毅, 等. 循环荷载下加筋砾性土填料的动三轴试验分析[J]. 岩土力学, 2020, 41(9): 2851-2860.
Wang Jia-quan, Chang Zhen-chao, Tang Yi, et al. Dynamic triaxial test analysis of reinforced gravel soil under cyclic loading[J]. Rock and Soil Mechanics, 2020, 41(9): 2851-2860.
[23] Zhang J H, Li F, Zeng L, et al. Effect of cushion and cover on moisture distribution in clay embankments in Southern China[J]. Journal of Central South University, 2020, 27(7): 1893-1906.
[24] 胡田飞, 刘建坤, 房建宏, 等. 冻融循环下压实度对粉质黏土力学性质影响的试验研究[J]. 岩石力学与工程学报, 2017, 36(6): 1495-1503.
Hu Tian-fei, Liu Jian-kun, Fang Jian-hong, et al. Experimental study on the effect of cyclic freezing-thawing on mechanical properties of silty clay with different degrees of compaction[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6): 1495-1503.
[25] 严晗, 刘建坤, 王天亮. 冻融对粉砂土力学性能影响的试验研究[J]. 北京交通大学学报, 2013, 37(4): 73-77.
Yan Han, Liu Jian-kun, Wang Tian-liang. Experimental research of influences of freeze-thaw on the mechanical properties of silty soil[J]. Journal of Beijing Jiaotong University, 2013, 37(4): 73-77.
[26] Yang Y G, Gao F, Lai Y M. Modified Hoek-Brown criterion for nonlinear strength of frozen soil[J]. Cold Regions Science and Technology, 2013, 86: 98-103.
[27] 李晶晶, 孔令伟, 凌贤长. 高铁堑坡粉质黏土原位强度特性与应力历史效应[J]. 湖南大学学报: 自然科学版, 2019, 46(3): 99-105.
Li Jing-jing, Kong Ling-wei, Ling Xian-zhang. Insitu strength characteristics and stress history effect of silty soil on high-speed railway cut slope[J]. Journal of Hunan University (Natural Sciences), 2019, 46(3): 99-105.
[28] 周葆春, 孔令伟, 马全国, 等. 压实膨胀土非饱和抗剪强度的湿度与密度效应[J]. 岩土力学, 2017, 38(): 240-246.
Zhou Bao-chun, Kong Ling-wei, Ma Quan-guo, et al. Effects of moisture and density states on unsaturated shear strength of compacted expansive soil[J]. Rock and Soil Mechanics, 2017, 38(Sup.1): 240-246.
[29] Prevost J, Hoeg K. Soil mechanics and plasticity analysis of strain softening[J]. Géotechnique, 1975, 25(2): 279-297.
[30] 赖远明, 程红彬, 高志华, 等. 冻结砂土的应力-应变关系及非线性莫尔强度准则[J]. 岩石力学与工程学报, 2007, 187(8): 1612-1617.
Lai Yuan-ming, Cheng Hong-bin, Gao Zhi-hua, et al. Stress-strain relationships and nonlinear mohr strength criterion of frozen sand clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 187(8): 1612-1617.
[1] 王黎明,宋子坤,周辉,魏文,袁浩. 超声处置石油沥青的流变学响应及响应机理[J]. 吉林大学学报(工学版), 2025, 55(4): 1346-1355.
[2] 徐俊鹏,郑传峰,杜艳韬,王雨航,路政,范文军. 寒区沥青混合料在水-热-力三场耦合作用下的损伤效应[J]. 吉林大学学报(工学版), 2025, 55(3): 877-887.
[3] 俞靖洋,李东钊,张志清,王真,孙海林,布海玲,李明春. 环保型蓄盐沥青混合料性能损伤演变[J]. 吉林大学学报(工学版), 2025, 55(3): 888-898.
[4] 杨彦海,李百川,杨野,王崇骅,岳靓. 基于虚拟劈裂试验的集料椭球表面基构造[J]. 吉林大学学报(工学版), 2025, 55(2): 653-663.
[5] 念腾飞,韩召,魏智强,王国伟,戈锦果,李萍. 考虑骨料形态的沥青混合料细观数值建模方法[J]. 吉林大学学报(工学版), 2025, 55(2): 639-652.
[6] 韦万峰,孔令云,禤炜安,杨帆,郭鹏. 沥青发泡特性及温拌混合料水分敏感性综述[J]. 吉林大学学报(工学版), 2025, 55(1): 20-35.
[7] 郭风春,毕海鹏,王海涛,吴树正,杨泓雨. 基于时温等效的纳米碳粉改性沥青黏弹行为[J]. 吉林大学学报(工学版), 2025, 55(1): 221-229.
[8] 刘海峰,陶仁光,车佳玲,杨维武,朱立晨. 荷载和高温对沙漠砂混凝土单轴抗压性能的影响[J]. 吉林大学学报(工学版), 2024, 54(9): 2609-2619.
[9] 高英力,谷小磊,廖美捷,胡新浪,谢雨彤. SiO2气凝胶/反应性弹性体三元共聚物/多聚磷酸复合改性沥青流变性能与改性机理[J]. 吉林大学学报(工学版), 2024, 54(7): 1978-1987.
[10] 崔亚宁,司春棣,凡涛涛,王飞. 水-荷耦合作用下沥青桥面铺装层裂缝扩展分析[J]. 吉林大学学报(工学版), 2024, 54(7): 1988-1996.
[11] 徐永丽,杨煦兰,周吉森,杨松翰,孙明刚. 温拌沥青的沥青烟成分及温拌剂抑烟性能[J]. 吉林大学学报(工学版), 2024, 54(6): 1701-1707.
[12] 孙雅珍,薛博欣,孙岩,王志臣,潘嘉伟. 考虑非均匀性的沥青混合料开裂行为细观模拟[J]. 吉林大学学报(工学版), 2024, 54(6): 1708-1718.
[13] 赵晓康,胡哲,牛振兴,张久鹏,裴建中,温永. 基于非均质模型的水稳碎石材料细观开裂行为[J]. 吉林大学学报(工学版), 2024, 54(5): 1258-1266.
[14] 万铜铜,汪海年,郑文华,冯珀楠,陈玉,张琛. 级配碎石层协调沥青混合料层温度收缩变形行为[J]. 吉林大学学报(工学版), 2024, 54(4): 1045-1057.
[15] 李松,石星星,司春棣,蒋继望,暴斌硕. 沥青胶浆高温流变性能及矿粉强化效应评价[J]. 吉林大学学报(工学版), 2024, 54(11): 3244-3254.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庄伟,宋光明,魏志刚,宋爱国 . 具有机动能力的无线传感器网络节点的设计与实现[J]. 吉林大学学报(工学版), 2007, 37(04): 939 -943 .
[2] 周平,郭威,申国哲,胡平. 薄板成形模拟中切边回弹算法[J]. 吉林大学学报(工学版), 2010, 40(04): 931 -0936 .
[3] 刘顺安,姚永明,尚涛,陈延礼,苗淼. 基于二次调节技术的小型装载机全液压驱动系统[J]. 吉林大学学报(工学版), 2011, 41(03): 665 -669 .
[4] 周淼磊,田彦涛,高巍,杨志刚,沈传亮 . 新型直动式压电电液伺服阀复合控制方法[J]. 吉林大学学报(工学版), 2007, 37(06): 1386 -1391 .
[5] 马楠,邵春福,赵熠. 基于双向绿波带宽最大化的交叉口信号协调控制优化[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 19 -0024 .
[6] 刘玉梅,王庆年,曹晓宁,熊伟,李雪海. 车用润滑油在线监测方法与监测系统[J]. 吉林大学学报(工学版), 2009, 39(06): 1441 -1445 .
[7] 宗长富1,陈双1,冯刚2,尹刚2,向晖2. 基于频率加权滤波的汽车平顺性评价[J]. 吉林大学学报(工学版), 2011, 41(6): 1517 -1521 .
[8] 宋少忠, 孔繁森, 王利芳. 多品种多供应点的物资调配和路线选择[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 144 -148 .
[9] 赵文竹, 殷涌光, 于志鹏, 于一丁, 刘静波. 玉米须多糖微波提取工艺及其红外光谱结构分析[J]. 吉林大学学报(工学版), 2012, 42(02): 515 -520 .
[10] 王松林, 马文星, 胡晶, 褚亚旭, 宋建军. 双涡轮液力变矩器超越离合器的改进及分析[J]. 吉林大学学报(工学版), 2013, 43(04): 922 -927 .