吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (4): 1045-1057.doi: 10.13229/j.cnki.jdxbgxb.20220699
• 交通运输工程·土木工程 • 上一篇
万铜铜1(),汪海年1(),郑文华1,冯珀楠1,陈玉1,张琛2
Tong-tong WAN1(),Hai-nian WANG1(),Wen-hua ZHENG1,Po-nan FENG1,Yu CHEN1,Chen ZHANG2
摘要:
为揭示级配碎石基层与沥青混合料面层的温度收缩协调变形规律,本文采用动静态应变采集系统实时获取沥青混合料层的温缩应变,基于PFC6.0 Suite和FLAC3D构建了组合结构连续-离散耦合模型,探究了级配碎石层与沥青混合料层温缩协调变形宏观和细观响应规律。研究结果表明:连续-离散耦合模型与室内试验的吻合度相比连续介质模型高,温缩系数相对误差最大为8.1%;沥青混合料及其组合试件温缩应变-时间关系曲线均呈先快后慢的非线性变化规律,沥青混合料类型及降温温差对级配碎石的约束作用基本无影响;组合试件温缩变形主要发生在前1 h内,沥青混合料层整体由“翘起”状逐渐过渡到“平缓”状;级配碎石层通过颗粒向内挤压运动,使两端松散膨胀及颗粒接触重组来实现与沥青混合料层的协调变形。本文从宏观应变响应与空隙率、配位数及三维组构细观响应揭示温缩协调变形机制,研究结果可为级配碎石基层沥青路面低温抗裂研究提供理论参考。
中图分类号:
1 | 孙红燕. 沥青路面低温开裂力学分析[D]. 西安:长安大学公路学院, 2013. |
Sun Hong-yan. Mechanical analysis of asphalt pavement low temperature cracking[D]. Xi'an: College of Highway, Chang'an University, 2013. | |
2 | Marasteanu M O, Li X, Clyne T R, et al. Low temperature cracking of asphalt concrete pavements[R]. Minnesota: Minnesota Department of Transportation, 2004. |
3 | 冯德成, 崔世彤, 易军艳, 等. EBBR试验下沥青结合料低温性能评价指标[J]. 交通运输工程学报, 2021, 21(5):94-103. |
Feng De-cheng, Cui Shi-tong, Yi Jun-yan, et al. Low temperature performance evaluation indexes of asphalt binder based on EBBR test[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5):94-103. | |
4 | Tan YQ, Zhang L, Xu H N. Evaluation of low-temperature performance of asphalt paving mixtures[J]. Cold Regions Science and Technology, 2012, 70: 107-112. |
5 | Canestrari F, Stimilli A, Bahia H U, et al. Pseudo-variables method to calculate HMA relaxation modulus through low-temperature induced stress and strain[J]. Materials and Design, 2015, 76:141-149. |
6 | 孙志棋. 基于收缩-松弛竞争机制的沥青混合料低温开裂机理研究[D]. 哈尔滨:哈尔滨工业大学交通科学与工程学院, 2020. |
Sun Zhi-qi. The thermal cracking mechanism of asphalt mixtures based on the contraction-relaxation competition[D]. Harbin: College of Transportastion Science and Engineering, Harbin Institute of Technology, 2020. | |
7 | Dave E V, Buttlar W G, Leon S E, et al. IlliTC–low-temperature cracking model for asphalt pavements[J]. Road Materials and Pavement Design, 2013, 14(2): 57-78. |
8 | Sun Z Q, Xu Y L, Tan Y Q, et al. Investigation of sand mixture interlayer reducing the thermal constraint strain in asphalt concrete overlay[J]. Construction and Building Materials, 2018, 171: 357-366. |
9 | Prieto-Muñoz P A, Yin H M, Buttlar W G. Two-dimensional stress analysis of low-temperature cracking in asphalt overlay/substrate systems[J]. Journal of Materials in Civil Engineering, 2013, 25(9): 1228-1238. |
10 | Timm D H, Guzina B B, Voller V R. Prediction of thermal crack spacing[J]. International Journal of Solids and Structures, 2003, 40(1): 125-142. |
11 | Xu Y L, Shan L Y, Sun Z Q. Effect of a sand mix interlayer on thermal cracking in overlays[J]. Journal of Materials in Civil Engineering, 2014, 26(9):No. 04014049. |
12 | 吴倩. 控制横向开裂率的沥青路面结构组合研究[D]. 哈尔滨:哈尔滨工业大学交通科学与工程学院, 2016. |
Wu Qian. Research on asphalt pavement structure combination in order to control transverse cracking rate[D]. Harbin: College of Transportastion Science and Engineering, Harbin Institute of Technology, 2016. | |
13 | Ahmed I, Thom N, Zaidi S B A, et al. A mechanistic approach to evaluate the fatigue life of inverted pavements[J]. Construction and Building Materials, 2021, 311:No.125288. |
14 | 曹明明. 刚柔复合式基层沥青路面结构特征与荷载响应分析[D]. 成都:西南交通大学土木工程学院, 2018. |
Cao Ming-ming. Analysis on structural characteristics and load responses for rigid and flexible composite base asphalt pavement[D]. Chengdu: College of Civil Engineering, Southwest Jiaotong Univeristy, 2018. | |
15 | Su N Y, Xiao F P, Wang J G, et al. Characterizations of base and subbase layers for mechanistic-empirical pavement design[J]. Construction and Building Materials, 2017, 152: 731-745. |
16 | 汪海年,张然,周俊,等.土工格室加筋碎石基层变形机理的数值模拟[J].中南大学学报:自然科学版, 2015,46(12): 4640-4646. |
Wang Hai-nian, Zhang Ran, Zhou Jun, et al. Numerical simulation of deformation mechanism of geocell reinforced gravel base course[J]. Journal of Central South University(Science and Technology), 2015,46(12): 4640-4646. | |
17 | 刘中林. 河北省高速公路沥青路面技术后评估研究[R].石家庄:河北省交通规划设计院, 2017. |
18 | 马宏岩. AASHTO沥青路面低温开裂预估模型的验证与改进[D]. 哈尔滨:哈尔滨工业大学交通科学与工程学院, 2011:2-13. |
Ma Hong-yan. The verification and improvement on asphalt pavement low temperature cracking perdiction model of AASHTO[D]. Harbin: College of Transportastion Science and Engineering, Harbin Institute of Technology, 2011:2-13. | |
19 | Ma H Y, Wang D S, Zhou C J, et al. Calibration on MEPDG low temperature cracking model and recommendation on asphalt pavement structures in seasonal frozen region of China[J]. Advances in Materials Science and Engineering, 2015, 19(2): 259-272. |
20 | Yin H M, Buttlar W G, Paulino G H. A two-dimensional elastic model of pavements with thermal failure discontinuities[C]∥Proceedings of the 3rd MIT Conf Comput Fluid Solid Mech, Cambridge, USA, 2005: 539-542. |
21 | Chen J Q, Chu R X, Wang H, et al. Experimental measurement and microstructure-based simulation of thermal conductivity of unbound aggregates[J]. Construction and Building Materials, 2018, 189: 8-18. |
22 | Zhang Y Q, Gu F, Luo X, et al. Modeling stress-dependent anisotropic elastoplastic unbound granular base in flexible pavements[J]. Transportation Research Record, 2018, 2672(52): 46-56. |
23 | 王赫. 基于三维离散单元法的级配碎石动三轴数值试验研究[D]. 西安:长安大学公路学院, 2017. |
Wang He. Research on dynamic triaxial numerical simulation of graded broken stones based on three - dimensional discrete element method[D]. Xi′an: College of Highway, Chang′an University, 2017. | |
24 | 刘玉,赵谟涵,吴超凡,等. 基于离散-连续耦合的落锤-路面动态相互作用研究[J]. 中国公路学报, 2020, 206(10): 150-162. |
Liu Yu, Zhao Mo-han, Wu Chao-fan, et al. Coupled discrete-continuous simulation and analysis of dynamic interactions between hammer and pavement[J]. China Journal Highway and Transportation, 2020, 206(10): 150-162. | |
25 | Jia M C, Yang Y, Liu B, et al. PFC/FLAC coupled simulation of dynamic compaction in granular soils[J]. Granular Matter, 2018, 20(4): 1-15. |
26 | Haddad H, Guessasma M, Fortin J. Heat transfer by conduction using DEM-FEM coupling method[J]. Computational Materials Science, 2014, 81: 339-347. |
27 | Sánchez-Leal F J. Gradation chart for asphalt mixes: development[J]. Journal of Materials in Civil Engineering, 2007, 19(2): 185-197. |
28 | 交通运输部公路科学研究院. 公路土工试验规程 [S].北京:人民交通出版社,2020. |
29 | 杨光, 王旭东, 张晨晨. 一种基于实时温度-应变采集的沥青混合料温缩特性测试方法[J]. 中外公路, 2015, 35(1): 259-262. |
Yang Guang, Wang Xu-dong, Zhang Chen-chen. A method for measuring temperature shrinkage characteristics of asphalt mixture based on real-time temperature-strain acquisition[J]. Journal of China and Foreign Highway, 2015, 35(1): 259-262. | |
30 | Tan Y Q, Sun Z Q, Gong X B, et al. Design parameter of low-temperature performance for asphalt mixtures in cold regions[J]. Construction and Building Materials, 2017, 155: 1179-1187. |
31 | 朱洪洲, 雷蕾, 范世平, 等. 沥青路面温度应力影响因素研究综述[J]. 科学技术与工程, 2021,21(13): 5188-5200. |
Zhu Hong-zhou, Lei Lei, Fan Shi-ping, et al. Review of research on influence factors of asphalt pavement thermal stress[J]. Science Technology and Engineering, 2021,21(13): 5188-5200. | |
32 | 延西利, 李绪梅, 孙毅, 等. 基于傅立叶导热定律的沥青混合料热传导试验[J]. 交通运输工程学报, 2013(6): 1-6. |
Yan Xi-li, Li Xu-mei, Yi Suan, et al. Heat conduction epertiment of asphalt mixture based on fourier's heat conduction law[J]. Journal of Traffic and Transportation Engineering, 2013(6): 1-6. | |
33 | 李改. 级配碎石基层与沥青混合料的层间粘结行为及其对路用性能影响研究[D]. 重庆:重庆交通大学土木工程学院, 2015: 34-46. |
Li Gai. Research on the bonding behavior between graded crushed stone and asphalt layer and the impact of road performance[D]. Chongqing: College of Civil Engineering, Chongqing Jiaotong University, 2015: 34-46. | |
34 | Lekarp F, Isacsson U, Dawson A. State of the art. I: resilient response of unbound aggregates[J]. Journal of Transportation Engineering, 2000, 126(1): 66-75. |
35 | Li S H, Hao P W. Stress dependent and redistribution behaviour of unbound granular material[J]. International Journal of Pavement Engineering, 2020, 21(3): 347-56. |
36 | Liu Y, You Z P, Li L, et al. Review on advances in modeling and simulation of stone-based paving materials[J]. Construction and Building Materials, 2013, 43: 408-417. |
[1] | 王壮,冯振刚,姚冬冬,崔奇,沈若廷,李新军. 导电沥青混凝土研究进展[J]. 吉林大学学报(工学版), 2024, 54(1): 1-21. |
[2] | 陈俊,孙振浩,赵成,吴欣怡,王俊鹏. 相变沥青混凝土复合结构降温效果试验分析[J]. 吉林大学学报(工学版), 2024, 54(1): 180-187. |
[3] | 唐乃膨,薛晨阳,刘少鹏,朱洪洲,李睿. 胶粉改性沥青老化机理及表征评价研究综述[J]. 吉林大学学报(工学版), 2024, 54(1): 22-43. |
[4] | 赵胜前,丛卓红,游庆龙,李源. 沥青-集料黏附和剥落研究进展[J]. 吉林大学学报(工学版), 2023, 53(9): 2437-2464. |
[5] | 马涛,马源,黄晓明. 基于多元非线性回归的智能压实关键参数最优解[J]. 吉林大学学报(工学版), 2023, 53(7): 2067-2077. |
[6] | 杨柳,王创业,王梦言,程阳. 设置自动驾驶小客车专用车道的六车道高速公路交通流特性[J]. 吉林大学学报(工学版), 2023, 53(7): 2043-2052. |
[7] | 周正峰,于晓涛,陶雅乐,郑茂,颜川奇. 基于灰色关联分析的树脂与弹性体高黏沥青高温性能评价[J]. 吉林大学学报(工学版), 2023, 53(7): 2078-2088. |
[8] | 张青霞,侯吉林,安新好,胡晓阳,段忠东. 基于车辆脉冲响应的路面不平度识别方法[J]. 吉林大学学报(工学版), 2023, 53(6): 1765-1772. |
[9] | 姜屏,陈业文,陈先华,张伟清,李娜,王伟. 改性石灰土在干湿和冻融循环下的无侧限抗压性能[J]. 吉林大学学报(工学版), 2023, 53(6): 1809-1818. |
[10] | 司春棣,崔亚宁,许忠印,凡涛涛. 层间粘结失效后桥面沥青铺装层细观力学行为分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1719-1728. |
[11] | 李岩,张久鹏,陈子璇,黄果敬,王培. 基于PCA-PSO-SVM的沥青路面使用性能评价[J]. 吉林大学学报(工学版), 2023, 53(6): 1729-1735. |
[12] | 刘状壮,郑文清,郑健,李轶峥,季鹏宇,沙爱民. 基于网格化的路表温度感知技术[J]. 吉林大学学报(工学版), 2023, 53(6): 1746-1755. |
[13] | 赵晓康,胡哲,张久鹏,裴建中,石宁. 基于光纤传感技术的路面结冰智能监测研究进展[J]. 吉林大学学报(工学版), 2023, 53(6): 1566-1579. |
[14] | 惠冰,杨心怡,张乐扬,李扬. 检测车轨迹偏移对沥青路面磨耗计算误差的影响[J]. 吉林大学学报(工学版), 2023, 53(6): 1756-1764. |
[15] | 李崛,张安顺,张军辉,钱俊峰. 级配碎石基层结构动力响应模型测试及数值分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1782-1789. |
|