吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (4): 1045-1057.doi: 10.13229/j.cnki.jdxbgxb.20220699

• 交通运输工程·土木工程 • 上一篇    

级配碎石层协调沥青混合料层温度收缩变形行为

万铜铜1(),汪海年1(),郑文华1,冯珀楠1,陈玉1,张琛2   

  1. 1.长安大学 特殊地区公路工程教育部重点实验室,西安 710064
    2.西安航空学院 能源与建筑学院,西安 710077
  • 收稿日期:2022-05-23 出版日期:2024-04-01 发布日期:2024-05-17
  • 通讯作者: 汪海年 E-mail:wantongtong@chd.edu.cn;wanghn@chd.edu.cn
  • 作者简介:万铜铜(1995-),男,博士研究生.研究方向: 寒区沥青路面结构抗裂.E-mail: wantongtong@chd.edu.cn
  • 基金资助:
    国家重点研发计划项目(2021YFB2601000);国家自然科学基金项目(52078048)

Thermal contraction deformation behavior of asphalt mixture overlay with coordination of unbound aggregate layer

Tong-tong WAN1(),Hai-nian WANG1(),Wen-hua ZHENG1,Po-nan FENG1,Yu CHEN1,Chen ZHANG2   

  1. 1.Key Laboratory for Special Area Highway Engineering of Ministry of Education,Chang'an University,Xi'an 710064,China
    2.School of Energy and Architecture,Xi'an Aeronautical Institute,Xi'an 710077,China
  • Received:2022-05-23 Online:2024-04-01 Published:2024-05-17
  • Contact: Hai-nian WANG E-mail:wantongtong@chd.edu.cn;wanghn@chd.edu.cn

摘要:

为揭示级配碎石基层与沥青混合料面层的温度收缩协调变形规律,本文采用动静态应变采集系统实时获取沥青混合料层的温缩应变,基于PFC6.0 Suite和FLAC3D构建了组合结构连续-离散耦合模型,探究了级配碎石层与沥青混合料层温缩协调变形宏观和细观响应规律。研究结果表明:连续-离散耦合模型与室内试验的吻合度相比连续介质模型高,温缩系数相对误差最大为8.1%;沥青混合料及其组合试件温缩应变-时间关系曲线均呈先快后慢的非线性变化规律,沥青混合料类型及降温温差对级配碎石的约束作用基本无影响;组合试件温缩变形主要发生在前1 h内,沥青混合料层整体由“翘起”状逐渐过渡到“平缓”状;级配碎石层通过颗粒向内挤压运动,使两端松散膨胀及颗粒接触重组来实现与沥青混合料层的协调变形。本文从宏观应变响应与空隙率、配位数及三维组构细观响应揭示温缩协调变形机制,研究结果可为级配碎石基层沥青路面低温抗裂研究提供理论参考。

关键词: 道路工程, 协调变形, 连续-离散耦合, 温缩开裂, 级配碎石, 细观响应

Abstract:

To reveal the coordinated deformation mechanism of temperature shrinkage between unbound aggregate base layer and asphalt mixture overlay, the dynamic and static strain acquisition system was adopted to obtain the thermal contraction strain of asphalt mixture layer in real time. And the continuum-discrete coupling model of composite structure was constructed based on PFC6.0 Suite and FLAC3D software. The macro- and meso-response law of unbound aggregate layer and asphalt mixture overlay were investigated. The results show that the continuous-discrete coupling model has higher consistency with the laboratory test than the continuum model, and the relative error of temperature shrinkage coefficient is 8.1%. The thermal strain-time curves of asphalt mixture and its composited specimens exhibit a nonlinear change law of first fast and then slow. And the asphalt mixture types and cooling temperature differences have little effect on the constraint action of unbound aggregate layer. The temperature shrinkage deformation occurred within the first hour, where the asphalt mixture layer gradually changed from "warp" to "gentle". The coordinated deformation between unbound aggregate base layer and asphalt mixture layer can be realized by particle contact recombination, the inwardly extruded movement of particles, loose on both ends and the middle compaction. In this paper, the coordinated deformation mechanism of temperature shrinkage was revealed from the macroscopic strain response, voids, coordination number and three-dimensional fabric change. A theoretical foundation for researching low temperature cracking resistant of asphalt pavement with unbound aggregate base layer can be improved.

Key words: road engineering, coordinated deformation, FEM-DEM coupling, thermal cracking, unbound aggregate, mesoscopic response

中图分类号: 

  • U416

表1

级配碎石混合料级配"

筛孔孔径/mm设计级配/%筛孔孔径/mm设计级配/%
31.5100.02.3620.8
26.5100.01.1813.2
19.080.60.68.5
16.072.00.35.4
13.263.60.153.5
9.551.30.0752.2
4.7532.7

表2

沥青混合料级配"

筛孔孔径/mmSMA13AC16AC20
26.5100.0100100.0
19.010010096.0
16.010097.285.0
13.298.082.071.2
9.564.069.060.7
4.7531.448.840.9
2.3621.832.130.2
1.1817.024.022.0
0.614.816.316.3
0.313.113.211.2
0.1511.78.68.6
0.07510.54.25.2

表3

透层用乳化沥青技术指标"

指标类型性能指标(Ⅰ型)指标值
破乳速度快裂、中裂和慢裂慢裂
黏度/S8~2020
筛上残留物/%≤0.10.05
蒸发残留物溶解度/%≥5050
粒子电荷非离子(+)
贮存稳定性(5 d)≥3060
固含量/%≥50≥50

图1

组合试件成型示意图"

图2

温缩试验"

图3

组合试件仿真模型示意图"

表4

试件材料FLAC模型参数"

材 料力学参数温缩参数
弹性模量E/MPa泊松比/υ内摩擦角φ/(°)内聚力c/kPa导热系数/[W·(m·K)-1热容量/[J·(kg·℃)-1
SMA137 5000.25//1.361 080
AC168 5000.25//1.33980
AC209 0000.25//1.22900
级配碎石2800.3537.469.11.20600

表5

级配碎石及粘结层离散元模型参数"

类 别参 数数 值
级配碎石颗粒参数颗粒密度/(kg·m-32 600
阻尼比0.7
空隙率0.24
粘结层颗粒参数颗粒密度/(kg·m-32 200
阻尼比0.7
空隙率0.01
平行粘结有效模量/MPa100
法向粘结强度/MPa100
切向粘结强度/MPa100
接触刚度比1.0
摩擦因数0.35
线性接触参数有效模量/MPa450
接触刚度比1.4
摩擦因数0.45

图4

级配碎石弹塑性模型"

图5

级配碎石三轴剪切试验"

图6

温缩变形规律"

表6

沥青混合料及其组合试件温缩系数"

沥青混合料类型温缩系数/(10-6·℃-1限制应变系数
10~0 ℃10~-10 ℃10~-20 ℃10~0 ℃10~-10 ℃10~-20 ℃
SMA13-1/5处36.24142.8
SMA13-3/5处32.337.839.5
均值34.239.442.1
SMA13组合试件-1/5处30.836.238.4

0.12

0.12

0.13

SMA13组合试件-3/5处29.333.634.7
均值30.134.936.6
AC16-1/5处29.332.838.7
AC16-3/5处26.627.729.8
均值28.030.234.3
AC16组合试件-1/5处26.327.631.2

0.11

0.12

0.13

AC16组合试件-3/5处23.625.628.3
均值25.026.629.7
AC20-1/5处25.326.631.0
AC20-3/5处21.120.923.6
均值23.223.727.3
AC20组合试件-1/5处22.320.326.4

0.10

0.17

0.11

AC20组合试件-3/5处19.518.822.3
均值20.919.624.2

图7

SMA13组合试件"

表7

不同模型组合试件温缩系数计算误差"

温缩试验温缩系数/(10-6·℃-1
SMA13AC16AC20
10 ℃20 ℃30 ℃10 ℃20 ℃30 ℃10 ℃20 ℃30 ℃
室内组合试件-1/5处30.836.238.426.427.631.222.318.824.0
室内组合试件-3/5处29.333.634.723.625.628.319.520.326.4
FEM-DEM耦合模型-1/5处32.637.337.326.929.030.121.420.025.2
FEM-DEM耦合模型-3/5处29.634.034.124.526.527.519.218.022.7
相对误差-1/5处/%-5.8-3.12.7-1.9-4.93.73.8-6.4-5.1
相对误差-3/5处/%-1.2-1.21.9-3.9-3.52.61.56.58.1
FEM-MC模型-1/5处33.437.740.829.331.232.024.622.928.3
FEM-MC模型-3/5处30.535.736.627.129.530.822.120.826.5
相对误差-1/5处/%-8.4-4.1-6.3-11.2-12.7-2.5-10.7-21.5-18.0
相对误差-3/5处/%-4.1-6.3-5.4-14.9-15.1-8.9-13.4-2.4-0.5
FEM-Linear模型-1/5处36.338.941.529.832.133.324.923.329.3
FEM-Linear模型-3/5处32.737.537.726.829.030.021.920.525.8
相对误差-1/5处/%-17.9-7.5-8.2-13.0-16.3-6.8-11.8-23.7-22.3
相对误差-3/5处/%-11.6-11.6-8.5-13.7-13.0-6.2-12.3-0.82.2

图8

温缩变形采集点分布"

图9

组合试件横向和纵向监测点处温缩变形规律"

图10

不同时间阶段的级配碎石层颗粒位移向量示意图"

图11

级配碎石层空隙率变化"

图12

级配碎石层配位数变化"

图13

不同状态级配碎石层颗粒接触变化"

1 孙红燕. 沥青路面低温开裂力学分析[D]. 西安:长安大学公路学院, 2013.
Sun Hong-yan. Mechanical analysis of asphalt pavement low temperature cracking[D]. Xi'an: College of Highway, Chang'an University, 2013.
2 Marasteanu M O, Li X, Clyne T R, et al. Low temperature cracking of asphalt concrete pavements[R]. Minnesota: Minnesota Department of Transportation, 2004.
3 冯德成, 崔世彤, 易军艳, 等. EBBR试验下沥青结合料低温性能评价指标[J]. 交通运输工程学报, 2021, 21(5):94-103.
Feng De-cheng, Cui Shi-tong, Yi Jun-yan, et al. Low temperature performance evaluation indexes of asphalt binder based on EBBR test[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5):94-103.
4 Tan YQ, Zhang L, Xu H N. Evaluation of low-temperature performance of asphalt paving mixtures[J]. Cold Regions Science and Technology, 2012, 70: 107-112.
5 Canestrari F, Stimilli A, Bahia H U, et al. Pseudo-variables method to calculate HMA relaxation modulus through low-temperature induced stress and strain[J]. Materials and Design, 2015, 76:141-149.
6 孙志棋. 基于收缩-松弛竞争机制的沥青混合料低温开裂机理研究[D]. 哈尔滨:哈尔滨工业大学交通科学与工程学院, 2020.
Sun Zhi-qi. The thermal cracking mechanism of asphalt mixtures based on the contraction-relaxation competition[D]. Harbin: College of Transportastion Science and Engineering, Harbin Institute of Technology, 2020.
7 Dave E V, Buttlar W G, Leon S E, et al. IlliTC–low-temperature cracking model for asphalt pavements[J]. Road Materials and Pavement Design, 2013, 14(2): 57-78.
8 Sun Z Q, Xu Y L, Tan Y Q, et al. Investigation of sand mixture interlayer reducing the thermal constraint strain in asphalt concrete overlay[J]. Construction and Building Materials, 2018, 171: 357-366.
9 Prieto-Muñoz P A, Yin H M, Buttlar W G. Two-dimensional stress analysis of low-temperature cracking in asphalt overlay/substrate systems[J]. Journal of Materials in Civil Engineering, 2013, 25(9): 1228-1238.
10 Timm D H, Guzina B B, Voller V R. Prediction of thermal crack spacing[J]. International Journal of Solids and Structures, 2003, 40(1): 125-142.
11 Xu Y L, Shan L Y, Sun Z Q. Effect of a sand mix interlayer on thermal cracking in overlays[J]. Journal of Materials in Civil Engineering, 2014, 26(9):No. 04014049.
12 吴倩. 控制横向开裂率的沥青路面结构组合研究[D]. 哈尔滨:哈尔滨工业大学交通科学与工程学院, 2016.
Wu Qian. Research on asphalt pavement structure combination in order to control transverse cracking rate[D]. Harbin: College of Transportastion Science and Engineering, Harbin Institute of Technology, 2016.
13 Ahmed I, Thom N, Zaidi S B A, et al. A mechanistic approach to evaluate the fatigue life of inverted pavements[J]. Construction and Building Materials, 2021, 311:No.125288.
14 曹明明. 刚柔复合式基层沥青路面结构特征与荷载响应分析[D]. 成都:西南交通大学土木工程学院, 2018.
Cao Ming-ming. Analysis on structural characteristics and load responses for rigid and flexible composite base asphalt pavement[D]. Chengdu: College of Civil Engineering, Southwest Jiaotong Univeristy, 2018.
15 Su N Y, Xiao F P, Wang J G, et al. Characterizations of base and subbase layers for mechanistic-empirical pavement design[J]. Construction and Building Materials, 2017, 152: 731-745.
16 汪海年,张然,周俊,等.土工格室加筋碎石基层变形机理的数值模拟[J].中南大学学报:自然科学版, 2015,46(12): 4640-4646.
Wang Hai-nian, Zhang Ran, Zhou Jun, et al. Numerical simulation of deformation mechanism of geocell reinforced gravel base course[J]. Journal of Central South University(Science and Technology), 2015,46(12): 4640-4646.
17 刘中林. 河北省高速公路沥青路面技术后评估研究[R].石家庄:河北省交通规划设计院, 2017.
18 马宏岩. AASHTO沥青路面低温开裂预估模型的验证与改进[D]. 哈尔滨:哈尔滨工业大学交通科学与工程学院, 2011:2-13.
Ma Hong-yan. The verification and improvement on asphalt pavement low temperature cracking perdiction model of AASHTO[D]. Harbin: College of Transportastion Science and Engineering, Harbin Institute of Technology, 2011:2-13.
19 Ma H Y, Wang D S, Zhou C J, et al. Calibration on MEPDG low temperature cracking model and recommendation on asphalt pavement structures in seasonal frozen region of China[J]. Advances in Materials Science and Engineering, 2015, 19(2): 259-272.
20 Yin H M, Buttlar W G, Paulino G H. A two-dimensional elastic model of pavements with thermal failure discontinuities[C]∥Proceedings of the 3rd MIT Conf Comput Fluid Solid Mech, Cambridge, USA, 2005: 539-542.
21 Chen J Q, Chu R X, Wang H, et al. Experimental measurement and microstructure-based simulation of thermal conductivity of unbound aggregates[J]. Construction and Building Materials, 2018, 189: 8-18.
22 Zhang Y Q, Gu F, Luo X, et al. Modeling stress-dependent anisotropic elastoplastic unbound granular base in flexible pavements[J]. Transportation Research Record, 2018, 2672(52): 46-56.
23 王赫. 基于三维离散单元法的级配碎石动三轴数值试验研究[D]. 西安:长安大学公路学院, 2017.
Wang He. Research on dynamic triaxial numerical simulation of graded broken stones based on three - dimensional discrete element method[D]. Xi′an: College of Highway, Chang′an University, 2017.
24 刘玉,赵谟涵,吴超凡,等. 基于离散-连续耦合的落锤-路面动态相互作用研究[J]. 中国公路学报, 2020, 206(10): 150-162.
Liu Yu, Zhao Mo-han, Wu Chao-fan, et al. Coupled discrete-continuous simulation and analysis of dynamic interactions between hammer and pavement[J]. China Journal Highway and Transportation, 2020, 206(10): 150-162.
25 Jia M C, Yang Y, Liu B, et al. PFC/FLAC coupled simulation of dynamic compaction in granular soils[J]. Granular Matter, 2018, 20(4): 1-15.
26 Haddad H, Guessasma M, Fortin J. Heat transfer by conduction using DEM-FEM coupling method[J]. Computational Materials Science, 2014, 81: 339-347.
27 Sánchez-Leal F J. Gradation chart for asphalt mixes: development[J]. Journal of Materials in Civil Engineering, 2007, 19(2): 185-197.
28 交通运输部公路科学研究院. 公路土工试验规程 [S].北京:人民交通出版社,2020.
29 杨光, 王旭东, 张晨晨. 一种基于实时温度-应变采集的沥青混合料温缩特性测试方法[J]. 中外公路, 2015, 35(1): 259-262.
Yang Guang, Wang Xu-dong, Zhang Chen-chen. A method for measuring temperature shrinkage characteristics of asphalt mixture based on real-time temperature-strain acquisition[J]. Journal of China and Foreign Highway, 2015, 35(1): 259-262.
30 Tan Y Q, Sun Z Q, Gong X B, et al. Design parameter of low-temperature performance for asphalt mixtures in cold regions[J]. Construction and Building Materials, 2017, 155: 1179-1187.
31 朱洪洲, 雷蕾, 范世平, 等. 沥青路面温度应力影响因素研究综述[J]. 科学技术与工程, 2021,21(13): 5188-5200.
Zhu Hong-zhou, Lei Lei, Fan Shi-ping, et al. Review of research on influence factors of asphalt pavement thermal stress[J]. Science Technology and Engineering, 2021,21(13): 5188-5200.
32 延西利, 李绪梅, 孙毅, 等. 基于傅立叶导热定律的沥青混合料热传导试验[J]. 交通运输工程学报, 2013(6): 1-6.
Yan Xi-li, Li Xu-mei, Yi Suan, et al. Heat conduction epertiment of asphalt mixture based on fourier's heat conduction law[J]. Journal of Traffic and Transportation Engineering, 2013(6): 1-6.
33 李改. 级配碎石基层与沥青混合料的层间粘结行为及其对路用性能影响研究[D]. 重庆:重庆交通大学土木工程学院, 2015: 34-46.
Li Gai. Research on the bonding behavior between graded crushed stone and asphalt layer and the impact of road performance[D]. Chongqing: College of Civil Engineering, Chongqing Jiaotong University, 2015: 34-46.
34 Lekarp F, Isacsson U, Dawson A. State of the art. I: resilient response of unbound aggregates[J]. Journal of Transportation Engineering, 2000, 126(1): 66-75.
35 Li S H, Hao P W. Stress dependent and redistribution behaviour of unbound granular material[J]. International Journal of Pavement Engineering, 2020, 21(3): 347-56.
36 Liu Y, You Z P, Li L, et al. Review on advances in modeling and simulation of stone-based paving materials[J]. Construction and Building Materials, 2013, 43: 408-417.
[1] 王壮,冯振刚,姚冬冬,崔奇,沈若廷,李新军. 导电沥青混凝土研究进展[J]. 吉林大学学报(工学版), 2024, 54(1): 1-21.
[2] 陈俊,孙振浩,赵成,吴欣怡,王俊鹏. 相变沥青混凝土复合结构降温效果试验分析[J]. 吉林大学学报(工学版), 2024, 54(1): 180-187.
[3] 唐乃膨,薛晨阳,刘少鹏,朱洪洲,李睿. 胶粉改性沥青老化机理及表征评价研究综述[J]. 吉林大学学报(工学版), 2024, 54(1): 22-43.
[4] 赵胜前,丛卓红,游庆龙,李源. 沥青-集料黏附和剥落研究进展[J]. 吉林大学学报(工学版), 2023, 53(9): 2437-2464.
[5] 马涛,马源,黄晓明. 基于多元非线性回归的智能压实关键参数最优解[J]. 吉林大学学报(工学版), 2023, 53(7): 2067-2077.
[6] 杨柳,王创业,王梦言,程阳. 设置自动驾驶小客车专用车道的六车道高速公路交通流特性[J]. 吉林大学学报(工学版), 2023, 53(7): 2043-2052.
[7] 周正峰,于晓涛,陶雅乐,郑茂,颜川奇. 基于灰色关联分析的树脂与弹性体高黏沥青高温性能评价[J]. 吉林大学学报(工学版), 2023, 53(7): 2078-2088.
[8] 张青霞,侯吉林,安新好,胡晓阳,段忠东. 基于车辆脉冲响应的路面不平度识别方法[J]. 吉林大学学报(工学版), 2023, 53(6): 1765-1772.
[9] 姜屏,陈业文,陈先华,张伟清,李娜,王伟. 改性石灰土在干湿和冻融循环下的无侧限抗压性能[J]. 吉林大学学报(工学版), 2023, 53(6): 1809-1818.
[10] 司春棣,崔亚宁,许忠印,凡涛涛. 层间粘结失效后桥面沥青铺装层细观力学行为分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1719-1728.
[11] 李岩,张久鹏,陈子璇,黄果敬,王培. 基于PCA-PSO-SVM的沥青路面使用性能评价[J]. 吉林大学学报(工学版), 2023, 53(6): 1729-1735.
[12] 刘状壮,郑文清,郑健,李轶峥,季鹏宇,沙爱民. 基于网格化的路表温度感知技术[J]. 吉林大学学报(工学版), 2023, 53(6): 1746-1755.
[13] 赵晓康,胡哲,张久鹏,裴建中,石宁. 基于光纤传感技术的路面结冰智能监测研究进展[J]. 吉林大学学报(工学版), 2023, 53(6): 1566-1579.
[14] 惠冰,杨心怡,张乐扬,李扬. 检测车轨迹偏移对沥青路面磨耗计算误差的影响[J]. 吉林大学学报(工学版), 2023, 53(6): 1756-1764.
[15] 李崛,张安顺,张军辉,钱俊峰. 级配碎石基层结构动力响应模型测试及数值分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1782-1789.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!