吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (7): 1978-1987.doi: 10.13229/j.cnki.jdxbgxb.20221132

• 交通运输工程·土木工程 • 上一篇    

SiO2气凝胶/反应性弹性体三元共聚物/多聚磷酸复合改性沥青流变性能与改性机理

高英力(),谷小磊,廖美捷,胡新浪,谢雨彤   

  1. 长沙理工大学 交通运输工程学院,长沙 410114
  • 收稿日期:2022-09-02 出版日期:2024-07-01 发布日期:2024-08-05
  • 作者简介:高英力(1977-),男,教授,博士. 研究方向:新型道路建筑材料. E-mail: yingligao509@126.com
  • 基金资助:
    国家自然科学基金项目(51978080);国家自然科学基金委员会与中国民用航空局联合资助项目(U1833127);湖南省科技厅重点研发项目(2021SK2044);湖南省研究生科研创新项目(CX20210756)

Rheological properties and modification mechanism of SiO2 aerogel/reactive elastomer terpolymer/Polyphosphoric acid composite modified asphalt

Ying-li GAO(),Xiao-lei GU,Mei-jie LIAO,Xin-lang HU,Yu-tong XIE   

  1. School of Traffic & Transportation Engineering,Changsha University of Science & Technology,Changsha 410114,China
  • Received:2022-09-02 Online:2024-07-01 Published:2024-08-05

摘要:

为探究反应性弹性体三元共聚物(RET)、多聚磷酸(PPA)和SiO2气凝胶(SG)复合改性沥青的流变性能,首先利用三大指标试验确定3种改性剂掺量;通过DSR、BBR、MSCR试验分析改性沥青高、低温性能及抗永久变形性能;借助傅里叶变换红外光谱试验、荧光显微试验和扫描电镜试验研究沥青改性机理和微观特性。结果表明: RET、PPA和SG的掺入提升了沥青高、低温性能。相比于原样沥青,复合改性沥青复数剪切模量提升了170%;-12 ℃时,蠕变劲度减小35 MPa,蠕变速率加快21.3%。气凝胶与两种聚合物以物理共混为主,改性过程生成新的吸收峰,气凝胶改善了沥青界面的相容性,且改性剂颗粒分散均匀,提高了沥青路用性能。

关键词: 道路工程, 改性沥青, 流变性能, 改性机理, 反应性弹性体三元共聚物, 多聚磷酸, SiO2气凝胶

Abstract:

In order to investigate the rheological properties of the modified asphalt compounded with reactive elastomer terpolymer (RET), polyphosphoric acid (PPA) and SiO2 aerogel (SG). Firstly, the three modifier doping amounts were determined by using the three index tests; the high and low temperature properties and permanent deformation resistance of the modified asphalt were analyzed by DSR, BBR and MSCR tests. Fourier transform infrared spectroscopy, fluorescence microscopy and scanning electron microscopy were used to study the modification mechanism and microscopic properties of asphalt. The results showed that the incorporation of RET, PPA and SG improved the high and low temperature performance of the asphalt. Compared with the as-built asphalt, the complex shear modulus of the composite modified asphalt increased by 170%; creep stiffness decreased by 35 MPa at -12 °C and creep rate increased by 21.3%. The aerogel and the two polymers were mainly physically blended, and the modification process generated new absorption peaks. The aerogel improved the compatibility of the asphalt interface, and the modifier particles were uniformly dispersed, which improved the asphalt road performance.

Key words: road engineering, modified asphalt, rheological properties, modification mechanism, reactive elastomer terpolymer, polyphosphoric acid, SiO2 aerogel

中图分类号: 

  • U414

表1

70#道路石油沥青基本性能指标检测结果"

技术指标检测值
针入度/(25 ℃,0.1 mm)68.3
软化点/℃47.7
5 ℃延度/cm11.6
质量损失/%0.1
针入度比/(25 ℃/%)65.6

图1

沥青三大指标测试结果"

表2

各沥青试验方案"

G1G2G3G4G5
基质沥青100%98.5%98.1%97.1%
RET1.5%1.5%1.5%
PPA0.4%0.4%
SG1%1%

图2

短期老化前后各沥青的|G*|/sinδ变化曲线"

图3

短期老化前后各沥青的δ变化曲线"

图4

BBR测试结果"

图5

各沥青试样时间-应变曲线"

图6

沥青短期老化(RTFOT)残留物MSCR测试结果"

图7

沥青G1-G2红外光谱图"

图8

沥青G3-G4-G5红外光谱图"

图9

沥青荧光显微图像"

图10

沥青扫描电镜图像"

1 《中国公路学报》编辑部. 中国路面工程学术研究综述·2020[J]. 中国公路学报, 2020, 33(10): 1-66.
Editorial Department of China Journal of Highway and Transport. Review on China's pavement engineering research·2020[J]. China Journal of Highway and Transport, 2020, 33(10): 1-66.
2 张金喜, 苏词, 王超, 等. 道路基础设施建设中的节能减排问题及技术综述[J]. 北京工业大学学报,2022, 48(3): 243-260.
Zhang Jin-xi, Su Ci, Wang Chao, et al. Review of energy-saving and emission-reduction issues and technologies in the construction of road infrastructure[J]. Journal of Beijing University of Technology, 2022, 48(3): 243-260.
3 祝鸿, 沈菊男, 余静. 全气候老化条件下沥青的微宏观特性[J]. 材料科学与工程学报,2021, 39(5): 801-807.
Zhu Hong, Shen Ju-nan, Yu Jing. Micro and macro-level properties of weathered asphalt binders[J]. Journal of Materials Science and Engineering, 2021, 39(5): 801-807.
4 梁波, 兰芳, 郑健龙. 沥青的老化机理与疲劳性能关系的研究进展[J]. 材料导报, 2021, 35(9): 9083-9096.
Liang Bo, Lan Fang, Zheng Jian-long. Research and development of relationship between aging mechanism and fatigue properties of asphalt[J]. Materials Reports, 2021, 35(9): 9083-9096.
5 郝培文, 常睿, 刘红瑛, 等. 反应性弹性体三元共聚物改性沥青及其混合料性能与机制[J]. 复合材料学报, 2018, 35(7): 1952-1962.
Hao Pei-wen, Chang Rui, Liu Hong-ying, et al. Mechanism and performance of reactive elastomeric terpolymer modified asphalt and asphalt mixture[J]. Acta Materiae Compositae Sinica, 2018, 35(7): 1952-1962.
6 常睿, 郝培文. RET复配胶粉改性沥青流变特性与改性机理研究[J]. 材料导报, 2016, 30(24): 130-136.
Chang Rui, Hao Pei-wen. Rheological properties and modification mechanism of RET compound rubber modified asphalt[J]. Materials Reports, 2016, 30(24): 130-136.
7 徐亚. RET反应型改性沥青混合料抗永久变形研究[J]. 华东交通大学学报, 2017, 34(4): 50-55.
Xu Ya. Study on anti-permanent deformation of RET modified asphalt mixture[J]. Journal of East China Jiaotong University, 2017, 34(4): 50-55.
8 郭乃胜, 俞春晖, 王淋, 等. PR.M/胶粉复合改性沥青流变及微观特性研究[J]. 材料导报, 2021, 35(10): 10080-10087.
Guo Nai-sheng, Yu Chun-hui, Wang Lin, et al. Rheological and microscopic properties of PR.M /crumb rubber composite modified asphalt[J]. Materials Reports, 2021, 35(10): 10080-10087.
9 Tacettin G, Maksut S. Performance properties of asphalt modified with reactive terpolymer[J]. Construction and Building Materials, 2018, 173: 262-271.
10 李宁, 申爱琴, 周彬, 等. 基于流变和微观分析的PR改性沥青老化性能评价[J]. 材料科学与工程学报, 2019, 37(5): 812-816.
Li Ning, Shen Ai-qin, Zhou Bin. Evaluation of aging properties of PR modified asphalt based on rheological and microscopic analysis[J]. Journal of Materials Science and Engineering, 2019, 37(5): 812-816.
11 张泽丰. 反应型RET-SBS复合改性沥青及其混合料动态性能研究[J]. 公路工程, 2021, 46(1): 174-179.
Zhang Ze-feng. Dynamic properties of reactive RET-SBS composited modified asphalt and asphalt mixture[J]. Highway Engineering, 2021, 46(1): 174-179.
12 郑睢宁, 何锐, 路天宇,等. RET/胶粉复合改性沥青制备及其混合料性能评价[J]. 吉林大学学报: 工学版, 2022, 53(5): 1381-1389.
Zheng Sui-ning, He Rui, Lu Tian-yu,et al. Preparation and evaluation of RET/rubber composite modified asphalt and asphalt mixture[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 53(5): 1381-1389.
13 张丽佳,黄伟, 魏明, 等. 多聚磷酸改性沥青的流变性能分析[J]. 材料科学与工程学报, 2020, 38(4):638-642.
Zhang Li-jia, Huang Wei, Wei Ming, et al. Analysis of rheological properties of polyphosphoric acid modified asphalt[J]. Journal of Materials Science and Engineering, 2020, 38(4): 638-642.
14 Singh D, Ashish P K, Kataware A, et al. Effects of WMA additives and hydrated lime on high-stress and high-temperature performance of Elvaloy®-and PPA-modified asphalt binder[J]. Road Materials and Pavement Design, 2019, 20(6): 1354-1375.
15 Singh D, Ashish P K, Chander S, et al. Effect of warm-mix additives and lime on intermediate-temperature fracture property of RET- and PPA-modified asphalt binder[J]. Journal of Materials in Civil Engineering, 2019, 31(7): No.0002756.
16 陈治君, 郝培文. 基于重复蠕变恢复试验的化学改性沥青高温性能[J]. 江苏大学学报:自然科学版, 2017, 38(4): 479-483.
Chen Zhi-jun, Hao Pei-wen. High temperature performance of chemical modified asphalt based on repeated creep and recovery test[J]. Journal of Jiangsu University(Natural Science Edition), 2017, 38(4): 479-483.
17 陈晨, 黄冬梅, 李德, 等. 不同粒径SiO2气凝胶/聚四氟乙烯复合材料的制备与表征[J]. 功能材料, 2020, 51(8): 210-220.
Chen Chen, Huang Dong-mei, LI De, et al. Preparation and characterization of SiO2 aerogel/polytetrafluoroethylene composites with different particle sizes[J]. Journal of Functional Materials, 2020, 51(8): 210-220.
18 金大中, 钱国平, 白献萍. 纳米改性沥青材料研究进展[J]. 化工新型材料, 2019, 47(12): 32-36.
Jin Da-zhong, Qian Guo-ping, Bai Xian-ping. Progress in nano modified asphalt material[J]. New Chemical Materials, 2019, 47(12): 32-36.
19 马佳, 沈晓冬, 崔升, 等. 纤维增强二氧化硅气凝胶复合材料的制备和低温性能[J]. 材料导报, 2015,29(20): 43-46, 63.
Ma Jia, Shen Xiao-dong, Cui Sheng, et al. Preparation and low-temperature properties of fiber reinforced SiO2 aerogel composites[J]. Materials Reports, 2015, 29(20): 43-46, 63.
20 锁利军. 纳米SiO2改性沥青混合料的制备及性能研究[J]. 功能材料, 2022, 53(5): 5199-5204.
Suo Li-jun. Research on preparation and performance of nano-SiO2 modified asphalt mixture[J]. Journal of Functional Materials, 2022, 53(5): 5199-5204.
21 苏银强, 刘玉梅, 汪国贤, 等. 表面氧化胶粉-纳米SiO2复合改性沥青性能研究[J]. 公路交通科技,2022, 39(3): 1-8, 29.
Su Yin-qiang, Liu Yu-mei, Wang Guo-xian, et al. Study on properties of surface oxidized crumb rubber and Nano-SiO2 composite modified asphalt[J]. Journal of Highway and Transportation Research and Development, 2022, 39(3): 1-8, 29.
22 Xu C, Zhang Z, Zhao F, et al. Improving the performance of RET modified asphalt with the addition of polyurethane prepolymer (PUP)[J]. Construction and Building Materials, 2019, 206: 560-575.
23 Gama D A, Rosa Junior J M, Jeferson A D M T, et al. Rheological studies of asphalt modified with elastomeric polymer[J]. Construction and Building Materials, 2016, 106: 290-295.
24 Gama D A, Yan Y, Rodrigues J K G, et al. Optimizing the use of reactive terpolymer, polyphosphoric acid and high-density polyethylene to achieve asphalt binders with superior performance[J]. Construction and Building Materials, 2018, 169: 522-529.
25 张增平, 黄婷, 朱友信, 等. PU软段结构类型对PU改性沥青性能的影响[J]. 长安大学学报: 自然科学版,2021, 41(6): 1-9.
Zhang Zeng-ping, Huang Ting, Zhu You-xin, et al. Effects of PU soft segment structure type on properties of PU modified asphalt[J]. Journal of Chang'an University(Natural Science Edition), 2021, 41(6):1-9.
26 唐伯明, 曹芯芯, 朱洪洲, 等. 生物油再生沥青胶结料路用性能分析[J]. 中国公路学报, 2019, 32(4):207-214.
Tang Bo-ming, Cao Xin-xin, Zhu Hong-zhou, et al. Pavement properties of bio-oil rejuvenated asphalt binder[J]. China Journal of Highway and Transport,2019, 32(4): 207-214.
[1] 徐永丽,杨煦兰,周吉森,杨松翰,孙明刚. 温拌沥青的沥青烟成分及温拌剂抑烟性能[J]. 吉林大学学报(工学版), 2024, 54(6): 1701-1707.
[2] 孙雅珍,薛博欣,孙岩,王志臣,潘嘉伟. 考虑非均匀性的沥青混合料开裂行为细观模拟[J]. 吉林大学学报(工学版), 2024, 54(6): 1708-1718.
[3] 赵晓康,胡哲,牛振兴,张久鹏,裴建中,温永. 基于非均质模型的水稳碎石材料细观开裂行为[J]. 吉林大学学报(工学版), 2024, 54(5): 1258-1266.
[4] 万铜铜,汪海年,郑文华,冯珀楠,陈玉,张琛. 级配碎石层协调沥青混合料层温度收缩变形行为[J]. 吉林大学学报(工学版), 2024, 54(4): 1045-1057.
[5] 陈俊,孙振浩,赵成,吴欣怡,王俊鹏. 相变沥青混凝土复合结构降温效果试验分析[J]. 吉林大学学报(工学版), 2024, 54(1): 180-187.
[6] 唐乃膨,薛晨阳,刘少鹏,朱洪洲,李睿. 胶粉改性沥青老化机理及表征评价研究综述[J]. 吉林大学学报(工学版), 2024, 54(1): 22-43.
[7] 王壮,冯振刚,姚冬冬,崔奇,沈若廷,李新军. 导电沥青混凝土研究进展[J]. 吉林大学学报(工学版), 2024, 54(1): 1-21.
[8] 赵胜前,丛卓红,游庆龙,李源. 沥青-集料黏附和剥落研究进展[J]. 吉林大学学报(工学版), 2023, 53(9): 2437-2464.
[9] 杨柳,王创业,王梦言,程阳. 设置自动驾驶小客车专用车道的六车道高速公路交通流特性[J]. 吉林大学学报(工学版), 2023, 53(7): 2043-2052.
[10] 马涛,马源,黄晓明. 基于多元非线性回归的智能压实关键参数最优解[J]. 吉林大学学报(工学版), 2023, 53(7): 2067-2077.
[11] 周正峰,于晓涛,陶雅乐,郑茂,颜川奇. 基于灰色关联分析的树脂与弹性体高黏沥青高温性能评价[J]. 吉林大学学报(工学版), 2023, 53(7): 2078-2088.
[12] 黄晓明,赵润民. 道路交通基础设施韧性研究现状及展望[J]. 吉林大学学报(工学版), 2023, 53(6): 1529-1549.
[13] 惠冰,杨心怡,张乐扬,李扬. 检测车轨迹偏移对沥青路面磨耗计算误差的影响[J]. 吉林大学学报(工学版), 2023, 53(6): 1756-1764.
[14] 张青霞,侯吉林,安新好,胡晓阳,段忠东. 基于车辆脉冲响应的路面不平度识别方法[J]. 吉林大学学报(工学版), 2023, 53(6): 1765-1772.
[15] 李崛,张安顺,张军辉,钱俊峰. 级配碎石基层结构动力响应模型测试及数值分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1782-1789.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!