吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (7): 1988-1996.doi: 10.13229/j.cnki.jdxbgxb.20221191

• 交通运输工程·土木工程 • 上一篇    

水-荷耦合作用下沥青桥面铺装层裂缝扩展分析

崔亚宁1,2,3(),司春棣1,2,3(),凡涛涛3,王飞3   

  1. 1.石家庄铁道大学 省部共建交通工程结构力学行为与系统安全国家重点实验室,石家庄 050043
    2.河北省交通安全与控制重点实验室,石家庄 050043
    3.石家庄铁道大学 交通运输学院,石家庄 050043
  • 收稿日期:2022-09-14 出版日期:2024-07-01 发布日期:2024-08-05
  • 通讯作者: 司春棣 E-mail:cuiyaning@stdu.edu.cn;sichundi@stdu.edu.cn
  • 作者简介:崔亚宁(1993-),男,博士研究生.研究方向:沥青路面材料与结构优化.E-mail:cuiyaning@stdu.edu.cn
  • 基金资助:
    国家自然科学基金项目(11972237);河北省交通厅科技计划项目(JD-202007)

Analysis on crack propagation of asphalt bridge deck pavement under water-force coupling action

Ya-ning CUI1,2,3(),Chun-di SI1,2,3(),Tao-tao FAN3,Fei WANG3   

  1. 1.State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,Shijiazhuang Tiedao University,Shijiazhuang 050043,China
    2.Key Laboratory of Traffic Safety and Control of Hebei Province,Shijiazhuang 050043,China
    3.School of Traffic and Transportation,Shijiazhuang Tiedao University,Shijiazhuang 050043,China
  • Received:2022-09-14 Online:2024-07-01 Published:2024-08-05
  • Contact: Chun-di SI E-mail:cuiyaning@stdu.edu.cn;sichundi@stdu.edu.cn

摘要:

沥青混合料桥面铺装层裂缝在水-荷载作用下会进一步引发松散、坑槽等病害,为揭示荷载作用下孔隙水压力对既有裂缝扩展的影响,本文建立了沥青混凝土连续箱梁桥面铺装层有限元模型,并通过现场动载试验,以桥梁动挠度及模态为指标验证有限元模型正确性。在桥面铺装层上面层底部预设纵向裂缝,通过分析裂缝尖端应力强度因子KIKII的变化规律研究水-荷耦合作用下桥面铺装层既有裂缝扩展对桥面的影响。研究发现,应力强度因子KI的变化反映出动水压力作用会促进铺装层张拉型裂缝扩张,水的存在导致KI值增大约50%,动水压力越大扩展速度越快,动水压力对剪切型裂缝的扩展影响较小,应力强度因子KII变化不大,但由于水的存在使得应力强度因子响应时间变长,因此,水会对桥面铺装层产生持续影响。

关键词: 道路工程, 桥面铺装层, 裂缝扩展, 水-荷载耦合, 应力强度因子

Abstract:

Cracks in pavement layer of asphalt mixture bridge deck will further cause looseness, pit and other diseases under water-load action. In order to reveal the influence of pore water pressure on the expansion of existing cracks under load, this paper established a finite element model of pavement layer of asphalt concrete continuous box girder bridge deck, and verified the correctness of the finite element model by field dynamic load test, taking dynamic deflection and modal of bridge as indexes. Then, longitudinal cracks are preset at the bottom of the upper layer of the deck paving layer, and the propagation effects of existing cracks on the deck paving layer under water-load coupling are studied by analyzing the variation of stress intensity factor KI and KII at the crack tip. It is found that the change of stress intensity factor (KI) reflects that the action of water pressure can promote the expansion of tensile cracks in pavement layer. The presence of water leads to the increase of KI value by about 50%, and the larger the hydrodynamic pressure is, the faster the expansion rate is. The hydrodynamic pressure has little effect on the expansion of shear cracks, and the stress intensity factor (KII) has little change. However, due to the presence of water, the response time of stress intensity factor becomes longer, so the water will have a continuous impact on the bridge deck paving layer.

Key words: road engineering, bridge deck pavement layer, crack propagation, water-load coupling, stress intensity factor

中图分类号: 

  • U414

图1

裂纹尖端应力图"

图2

裂纹尖端应力图"

图3

三维模型图"

表1

桥面铺装层材料参数"

结构层厚度/cm模量/MPa泊松比密度/(kg·m-3
ARHM-13411 5000.352550
ARHM-20890000.352521
C5034 5000.37800

图4

模型横截面图"

图5

单片箱梁尺寸示意图"

图6

铺装层裂缝位置示意图"

图7

裂缝区域网格模型"

图8

等效矩形荷载示意图"

图9

测点布置图"

表2

车辆的参数"

参数数值参数数值
车身长度8.675 m轴距4.050+1.350 m
车身高度3.6 m前轮距1.950 m
车身宽度2.55 m后轮距1.878 m
货厢长度5.6 m整车质量12.5 t
货厢高度1.5 m额定质量12.37 t
货厢宽度2.35 m总质量25 t
车头高度1.75 m轮胎规格12.00R20
青岛解放 JH6自卸式重卡(三轴)
车辆实际称重质量:50 510 kg

图10

现场测试图"

图11

不同车速下的跨中位移"

图12

不同速度下的仿真竖向位移图"

表3

动挠度结果对比分析"

车速/(km·h-1现场试验/mm数值仿真/mm误差/%
200.9471.005.6
301.1541.2246.07
400.9741.0336.06
501.1151.0089.60

图13

现场测试前3阶模态"

图14

有限元数值仿真前3阶模态"

表4

模态结果对比分析"

模态阶数实测模态/Hz仿真模态/Hz误差/%
1阶3.2243.2480.73
2阶3.7683.7820.37
3阶6.0095.8013.45

图15

行车荷载作用下裂缝应力强度因子KI"

图16

行车荷载作用下裂缝应力强度因子KII"

图17

水-荷载耦合作用下裂缝应力强度因子KI"

图18

水-荷载耦合作用下裂缝应力强度因子KII"

图19

1.1 MPa下各工况裂缝应力强度因子KI"

图20

1.1 MPa下各工况裂缝应力强度因子KII"

1 罗苏平,但汉成,李亮,等. 移动交通荷载下饱和沥青路面的水力耦合分析[J]. 华南理工大学学报:自然科学版,2012,40(2):104-111.
Luo Su-ping, Dan Han-cheng, Li Liang, et al. Water-load coupling analysis of saturated asphalt pavement under moving traffic load[J]. Journal of South China University of Technology (Natural Science Edition),2012,40(2):104-111.
2 田冬梅, 邓德华, 田青,等. 水对水泥乳化沥青砂浆动态力学性能的影响[J]. 硅酸盐学报, 2013,41(11):1507-1513.
Tian Dong-mei, Deng De-hua, Tian Qing, et al. Effect of water on dynamic mechanical properties of cement emulsified asphalt mortar[J]. Journal of the Chinese Ceramic Society, 2013,41(11):1507-1513.
3 李志刚,邓小勇.动载作用下沥青路面内部孔隙水压力的轴对称弹性解[J].东南大学学报:自然科学版,2008(5):804-810.
Li Zhi-gang, Deng Xiao-yong. Axisymmetric elastic solution of pore water pressure in asphalt pavement under dynamic load[J]. Journal of Southeast University (Natural Science Edition),2008 (5) : 804-810.
4 朱维耀, 李华, 邓庆军,等. 多孔介质细观流动理论研究进展[J]. 工程科学学报, 2020, 20(5):1-13.
Zhu Wei-yao, Li Hua, Deng Qing-jun, et al. Advances in mesoscopic flow theory in porous media[J]. Chinese Journal of Engineering Science, 2020, 20(5):1-13.
5 Liang J Y, Li Y M, Erich B. A macro-microscopic coupled constitutive model for fluid-saturated porous media with compressible constituents[J]. Transport in Porous Media, 2022, 141(2):379-416.
6 Lu G Y, Törzs T, Liu P F, et al. Dynamic response of fully permeable pavements: development of pore pressures under different modes of loading[J]. Journal of Materials in Civil Engineering, 2020, 41(5): 6-13.
7 Yeh C L, Lo W C, Lin C W. Influence of pore water pressure change on consolidation behavior of saturated poroelastic medium[J]. Proceedings of the International Association of Hydrological Sciences, 2020, 2(7): 18-24.
8 董泽蛟, 谭忆秋, 曹丽萍,等. 水-荷载耦合作用下沥青路面孔隙水压力研究[J]. 哈尔滨工业大学学报, 2007, 39(10):1614-1617.
Dong Ze-jiao, Tan Yi-qiu, Cao Li-ping.Research on pore pressure within asphalt pavement under the coupled moisture-loading action[J].Journal of Harbin Institute of Technology,2007,39(10):1614-1617.
9 董泽蛟, 曹丽萍, 谭忆秋. 饱水沥青路面动力响应的空间分布分析[J]. 土木建筑与环境工程, 2007, 29(4):79-82.
Dong Ze-jiao, Cao Li-ping, Tan Yi-qiu. Spatial distribution analysis of dynamic response of saturated asphalt pavement[J]. Civil, Architectural and Environmental Engineering, 2007, 29(4):79-82.
10 董泽蛟, 曹丽萍, 谭忆秋,等. 表面排水条件对饱水沥青路面动力响应的影响分析[J]. 公路交通科技, 2008, 25(1):10-15.
Dong Ze-jiao, Cao Li-ping, Tan Yi-qiu, et al. Influence of surface drainage conditions on dynamic response of saturated asphalt pavement[J]. Journal of Highway and Traffic Science and Technology, 2008, 25(1):10-15.
11 陈团结. 大跨径钢桥面环氧沥青混凝土铺装裂缝行为研究[D]. 南京: 东南大学交通学院, 2006.
Chen Tuan-jie. Study on crack behavior of epoxy asphalt concrete pavement of long span steel bridge deck [D]. Nanjing: School of Transportation,Southeast University, 2006.
12 吴国雄, 谭栋杰, 袁传泯. 荷载与渗压耦合作用下沥青面层层底裂纹扩展分析[J]. 重庆交通大学学报:自然科学版, 2012, 31(5):962-965.
Wu Guo-xiong, Tan Dong-jie, Yuan Chuan-min. Analysis of crack propagation at the bottom of asphalt surface under the coupling of load and osmotic pressure[J]. Journal of Chongqing Jiaotong University (Natural Science Edition), 2012, 31(5):962-965.
13 徐华, 杨绿峰, 佘振平. 半刚性基层沥青路面反射裂缝扩展过程分析的Williams单元[J]. 工程力学, 2013, 30(6):247-253.
Xu Hua, Yang Lyu-feng, She Zhen-ping. Williams element analysis of reflective crack propagation process in semi-rigid base asphalt pavement [J]. Engineering Mechanics, 2013, 30(6):247-253.
[1] 高英力,谷小磊,廖美捷,胡新浪,谢雨彤. SiO2气凝胶/反应性弹性体三元共聚物/多聚磷酸复合改性沥青流变性能与改性机理[J]. 吉林大学学报(工学版), 2024, 54(7): 1978-1987.
[2] 徐永丽,杨煦兰,周吉森,杨松翰,孙明刚. 温拌沥青的沥青烟成分及温拌剂抑烟性能[J]. 吉林大学学报(工学版), 2024, 54(6): 1701-1707.
[3] 孙雅珍,薛博欣,孙岩,王志臣,潘嘉伟. 考虑非均匀性的沥青混合料开裂行为细观模拟[J]. 吉林大学学报(工学版), 2024, 54(6): 1708-1718.
[4] 赵晓康,胡哲,牛振兴,张久鹏,裴建中,温永. 基于非均质模型的水稳碎石材料细观开裂行为[J]. 吉林大学学报(工学版), 2024, 54(5): 1258-1266.
[5] 万铜铜,汪海年,郑文华,冯珀楠,陈玉,张琛. 级配碎石层协调沥青混合料层温度收缩变形行为[J]. 吉林大学学报(工学版), 2024, 54(4): 1045-1057.
[6] 回丽,金磊,宋万万,周松,安金岚. 转向架用SMA490BW钢不同焊接区域裂纹扩展速率[J]. 吉林大学学报(工学版), 2024, 54(3): 650-656.
[7] 陈俊,孙振浩,赵成,吴欣怡,王俊鹏. 相变沥青混凝土复合结构降温效果试验分析[J]. 吉林大学学报(工学版), 2024, 54(1): 180-187.
[8] 唐乃膨,薛晨阳,刘少鹏,朱洪洲,李睿. 胶粉改性沥青老化机理及表征评价研究综述[J]. 吉林大学学报(工学版), 2024, 54(1): 22-43.
[9] 王壮,冯振刚,姚冬冬,崔奇,沈若廷,李新军. 导电沥青混凝土研究进展[J]. 吉林大学学报(工学版), 2024, 54(1): 1-21.
[10] 赵胜前,丛卓红,游庆龙,李源. 沥青-集料黏附和剥落研究进展[J]. 吉林大学学报(工学版), 2023, 53(9): 2437-2464.
[11] 马涛,马源,黄晓明. 基于多元非线性回归的智能压实关键参数最优解[J]. 吉林大学学报(工学版), 2023, 53(7): 2067-2077.
[12] 杨柳,王创业,王梦言,程阳. 设置自动驾驶小客车专用车道的六车道高速公路交通流特性[J]. 吉林大学学报(工学版), 2023, 53(7): 2043-2052.
[13] 周正峰,于晓涛,陶雅乐,郑茂,颜川奇. 基于灰色关联分析的树脂与弹性体高黏沥青高温性能评价[J]. 吉林大学学报(工学版), 2023, 53(7): 2078-2088.
[14] 张青霞,侯吉林,安新好,胡晓阳,段忠东. 基于车辆脉冲响应的路面不平度识别方法[J]. 吉林大学学报(工学版), 2023, 53(6): 1765-1772.
[15] 姜屏,陈业文,陈先华,张伟清,李娜,王伟. 改性石灰土在干湿和冻融循环下的无侧限抗压性能[J]. 吉林大学学报(工学版), 2023, 53(6): 1809-1818.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!