吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (1): 221-229.doi: 10.13229/j.cnki.jdxbgxb.20240127

• 交通运输工程·土木工程 • 上一篇    

基于时温等效的纳米碳粉改性沥青黏弹行为

郭风春1(),毕海鹏2(),王海涛2,吴树正2,杨泓雨2   

  1. 1.中交一公局,北京 100024
    2.吉林大学 交通学院,长春 130022
  • 收稿日期:2024-01-31 出版日期:2025-01-01 发布日期:2025-03-28
  • 通讯作者: 毕海鹏 E-mail:guofc16@163.com;bihp@jlu.edu.cn
  • 作者简介:郭风春(1979-),女,高级工程师. 研究方向:道路工程. E-mail: guofc16@163.com
  • 基金资助:
    吉林省教育厅科研项目(JJKH20211113KJ)

Viscoelastic behavior of carbon nano powder modified asphalt based on time-temperature equivalence

Feng-chun GUO1(),Hai-peng BI2(),Hai-tao WANG2,Shu-zheng WU2,Hong-yu YANG2   

  1. 1.China First Highway Engineering Company Limited,Beijing 100024,China
    2.College of Transportation,Jilin University,Changchun 130022,China
  • Received:2024-01-31 Online:2025-01-01 Published:2025-03-28
  • Contact: Hai-peng BI E-mail:guofc16@163.com;bihp@jlu.edu.cn

摘要:

为了解纳米碳粉改性沥青的高低温黏弹行为,本文将基于多温度多重应力蠕变恢复试验及低温松弛试验,结合时温等效原理,对纳米碳粉改性沥青的蠕变及松弛行为进行分析。随后结合Laplace卷积积分,反演并验证纳米碳粉改性沥青的低温松弛行为。结果表明,在中低温环境下,纳米碳粉改性沥青弹性稳定性较强,应力敏感程度较低。短期蠕变柔量较小,长期蠕变柔量增长明显,应力松弛效应显著。本文提出的反演松弛模量方法与低温松弛试验模量曲线Pearson相关性为0.911。本文为纳米碳粉改性沥青的应用提供试验及理论参考,同时提供一种有效反演纳米碳粉改性沥青低温松弛行为的方法。

关键词: 道路工程, 纳米碳粉改性沥青, 黏弹行为, 时温等效原理, Laplace卷积积分

Abstract:

In order to understand the high and low temperature viscoelastic behavior of carbon nano powder modified asphalt, this paper will analyze the creep and relaxation behavior of carbon nano powder modified asphalt based on multi-temperature and multi-stress creep recovery test and low-temperature relaxation test, combined with the principle of time-temperature equivalence. Subsequently, the low-temperature relaxation behavior of carbon nano powder modified asphalt was inverted and verified by combining the Laplace convolution integral. The results show that the carbon nano powder modified asphalt has stronger elastic stability and lower stress sensitivity at low and medium temperatures. The short-term creep flexural volume is small, the long-term creep flexural volume grows significantly, and the stress relaxation effect is significant. The Pearson correlation between the inverse relaxation modulus method proposed in this paper and the modulus curve of low-temperature relaxation test is 0.911. This study will provide experimental and theoretical references for the application of carbon nano powder modified asphalt, and at the same time, provide an effective inverse relaxation behavior of low-temperature relaxation of carbon nano powder modified asphalt.

Key words: road engineering, carbon nano powder modified asphalt, viscoelastic behavior, time-temperature equivalence principle, Laplace convolution integral

中图分类号: 

  • U416

表1

90#基质沥青性能参数"

性能参数单位技术 要求检测 指标

方法

试验

针入度25 ℃, 100 g, 5 s0.1 mm80~10088GB/T 4509
延度15 ℃cm>100>100GB/T 4508
软化点42~5545.0GB/T 4507
闪点(开)≥230256GB/T 267
溶解度%≥9999.60GB/T 11148
蜡含量%≤3.02.2SH/T 0425
密度25 ℃kg/m3-1 005.4GB/T 8928
163 ℃薄 膜烘箱 试验5 h质量变化%≤1.0-0.097GB/T 5304
针入度比25 ℃%≥5070GB/T 4509
延度15 ℃cm≥4069GB/T 4508

图1

纳米碳粉"

表2

纳米碳粉成分组成"

化学成分质量分数化学成分质量分数
C≥99.9Mn0.002
Al0.002Na0.002
Fe0.001Cu0.003
Ca0.002Ni0.002
Mo0.001Pb0.002
Zr0.001Si0.003

图2

动态剪切流变仪"

图3

蠕变恢复特征曲线"

图4

不同温度及不同应力水平下蠕变恢复指标"

图5

Rdiff及Jnrdiff结果"

图6

蠕变柔量主曲线"

表3

纳米碳粉改性沥青蠕变曲线移位因子及WLF方程参数"

试验温度/℃WLF方程参数
2030405060C1C2R2
014.18619.58721.50921.904-27.3508.7530.996 5

表4

纳米碳粉改性沥青蠕变柔量主曲线Prony级数识别结果"

i=1i=2i=3i=4i=5i=6i=7
Ji/kPa-13.82×10-32.09×10-24.37×10-25.56×10-12.524 725.814 102.59
Ti/s1.00×1011.00×1051.00×10101.00×10151.00×10201.00×10251.00×1030
Je/kPa-12.71×10-2
Ji/kPa-18 830.92
R2/0.996 5

图7

-10 ℃纳米碳粉改性沥青蠕变柔量曲线与松弛模量曲线"

图8

低温松弛应力应变曲线"

图9

松弛模量曲线"

表5

纳米碳粉改性沥青松弛模量曲线Prony级数识别结果"

i=1i=2i=3i=4i=5i=6i=7
Ei/kPa9.75×10-139.73×10-139.71×10-1360.5750.278.519.99×10-13
Ti/s1.00×10-31.00×10-21.00×10-111.00×1011.00×1021.00×103
Ee/kPa1.03
∑Ei/kPa119.35
R2/0.981 2

图10

Laplace反演及试验获得的松弛模量曲线对比"

1 Bobbili A, Kollipara S K, Mallikarjuna V, et al. Comparative study on asphalt mixture with nano materials and polymer[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1112(1): No.012019.
2 Singh B, Prasad D, Kumar A, et al.Use of nano-materials to enhance the properties of asphalt mixes[J]. Materials Today: Proceedings, 2022, 65(2): 1861-1866.
3 徐衍青,李瑞明,郑传峰. 纳米材料在沥青路面中的应用综述[J]. 中外公路, 2021, 41(1): 206-214.
Xu Yan-qing, Li Rui-ming, Zheng Chuan-feng. Review on application of nanomaterials in asphalt pavement[J]. Journal of China & Foreign Highway, 2021, 41(1): 206-214.
4 俞才华. 碳纳米材料与SBS改性沥青相互作用及调控研究[D]. 郑州:河南工业大学土木工程学院, 2022.
Yu Cai-hua. Study on the interaction between carbon nanomaterials and SBS modified asphalt and the regulation method[D]. Zhengzhou: School of Civil Engineering, Henan University of Technology, 2022.
5 Amini A, Ziari H, Saadatjoo S A, et al. Rutting resistance, fatigue properties and temperature susceptibility of nano clay modified asphalt rubber binder[J]. Construction and Building Materials, 2021, 267: No.120946.
6 Rezaei S, Khordehbinan M, Fakhrefatemi S M R. The effect of nano-SiO2 and the styrene butadiene styrene polymer on the high-temperature performance of hot mix asphalt[J]. Petroleum Science and Technology, 2017, 35(6): 553-560.
7 Xue Y, Liu C, Lyu S, et al. Research on rheological properties of CNT-SBR modified asphalt[J]. Construction and Building Materials, 2022, 361: No.129587.
8 Di H, Zhang H, Yang E, et al. Usage of nano-TiO2 or nano-ZnO in asphalt to resist aging by NMR spectroscopy and rheology technology[J]. Journal of Materials in Civil Engineering, 2023, 35(1): No.0004570.
9 沈雪婷,王矿,张瑞芝,等. 自分散纳米碳粉的制备及性能[J]. 印染助剂, 2021, 38(6): 31-33.
Shen Xue-ting, Wang Kuang, Zhang Rui-zhi, et al. Preparation and properties of self-dispersing nano-carbon powder[J]. Textile Auxiliaries, 2021, 38(6): 31-33.
10 Huang S, Liang C. Evaluation of the engineering properties of powdered activated carbon amendments in porous asphalt pavement[J]. Processes, 2021, 9(4): No.9040582.
11 李诗琦,李闯民,李元元. 回收碳粉改性沥青制备参数及性能研究[J]. 石油沥青, 2016, 30(6): 25-30.
Li Shi-qi, Li Chuang-min, Li Yuan-yuan. Preparation parameters and performance study of recycled carbon powder modified asphalt[J]. Petroleum Asphalt, 2016, 30(6): 25-30.
12 孟旭,谢祥兵,李广慧,等. 基于正交灰关联分析的纳米碳粉/橡胶粉复合改性沥青制备工艺试验研究[J]. 硅酸盐通报, 2019, 38(8): 2642-2649.
Meng Xu, Xie Xiang-bing, Li Guang-hui, et al. Experimental study on preparation technology of nano-carbon powder/rubber powder composite modified asphalt based on orthogonal grey relation analysis[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(8): 2642-2649.
13 Amirbayev Y, Yelshibayev A, Nugmanova A. Characterization of asphalt bitumens and asphalt concretes modified with carbon powder[J]. Case Studies in Construction Materials, 2022, 17: No. e01554.
14 王明伟,谢祥兵,李广慧,等. 基于动态力学的纳米碳粉-橡胶粉-SBS改性沥青相态结构分析[J]. 硅酸盐通报, 2021, 40(7): 2444-2453.
Wang Ming-wei, Xie Xiang-bing, Li Guang-hui, et al. Phase structure analysis of nano carbon powder-rubber powder-SBS modified asphalt based on dynamic mechanics[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(7): 2444-2453.
15 Wang Y F, Hong L, Liu Z M, et al. Rheological performance evaluation of activated carbon powder modified asphalt based on TOPSIS method[J]. Case Studies in Construction Materials, 2024, 20: No.e02963.
16 ASTM D7405. Standard test method for multiple stress creep and recovery(M ) of asphalt binder using a dynamic shear rheometer[S].
17 杨作杰. 橡胶沥青混合料性能试验研究[J]. 交通世界(建养·机械), 2015(8): 100-101.
Yang Zuo-jie. Experimental study on rubberized asphalt mixture performance[J]. TranspoWorld, 2015(8): 100-101.
18 Maturana L G, López A O. Determination and assessment of the linear viscoelastic range and viscoelastic properties of modified asphalt and mastics under different temperature conditions[J]. Construction and Building Materials, 2024, 420: No.135606.
19 Abate J, Valkó P P. Multi-precision Laplace transform inversion[J]. International Journal for Numerical Methods in Engineering, 2004, 60(5): 979-993.
20 Saboo N, Sukhija M. Evaluating the suitability of nanoclay-modified asphalt binders from 10℃ to 70℃[J]. Journal of Materials in Civil Engineering, 2020, 32(12): No.04020393.
21 Park S W, Schapery R A. Methods of interconversion between linear viscoelastic material functions. Part I——a numerical method based on Prony series[J]. International Journal of Solids and Structures, 1999, 36(11): 1653-1675.
22 Schapery R A, Park S W. Methods of interconversion between linear viscoelastic material functions. Part II——an approximate analytical method[J]. International Journal of Solids and Structures, 1999, 36(11): 1677-1699.
23 茹楠. 基于分子模拟的再生剂对热再生沥青混合料性能影响研究[D]. 重庆:重庆交通大学土木工程学院, 2023.
Ru Nan. Study on the influence of recycler based on molecular simulation on the performance of hot-recycled asphalt mixture[D]. Chongqing: School of Civil Engineering, Chongqing Jiaotong University, 2023.
[1] 韦万峰,孔令云,禤炜安,杨帆,郭鹏. 沥青发泡特性及温拌混合料水分敏感性综述[J]. 吉林大学学报(工学版), 2025, 55(1): 20-35.
[2] 崔亚宁,司春棣,凡涛涛,王飞. 水-荷耦合作用下沥青桥面铺装层裂缝扩展分析[J]. 吉林大学学报(工学版), 2024, 54(7): 1988-1996.
[3] 高英力,谷小磊,廖美捷,胡新浪,谢雨彤. SiO2气凝胶/反应性弹性体三元共聚物/多聚磷酸复合改性沥青流变性能与改性机理[J]. 吉林大学学报(工学版), 2024, 54(7): 1978-1987.
[4] 徐永丽,杨煦兰,周吉森,杨松翰,孙明刚. 温拌沥青的沥青烟成分及温拌剂抑烟性能[J]. 吉林大学学报(工学版), 2024, 54(6): 1701-1707.
[5] 孙雅珍,薛博欣,孙岩,王志臣,潘嘉伟. 考虑非均匀性的沥青混合料开裂行为细观模拟[J]. 吉林大学学报(工学版), 2024, 54(6): 1708-1718.
[6] 赵晓康,胡哲,牛振兴,张久鹏,裴建中,温永. 基于非均质模型的水稳碎石材料细观开裂行为[J]. 吉林大学学报(工学版), 2024, 54(5): 1258-1266.
[7] 万铜铜,汪海年,郑文华,冯珀楠,陈玉,张琛. 级配碎石层协调沥青混合料层温度收缩变形行为[J]. 吉林大学学报(工学版), 2024, 54(4): 1045-1057.
[8] 徐进,陈正欢,廖祺硕,郑展骥,张河山. 基于心电数据的高速公路高密度互通立交驾驶负荷[J]. 吉林大学学报(工学版), 2024, 54(10): 2807-2818.
[9] 朱洪洲,苏春力,唐乃膨,魏俊尧,孙宏军. 胶粉改性沥青排放物采样及定量分析方法[J]. 吉林大学学报(工学版), 2024, 54(10): 2922-2929.
[10] 陈俊,孙振浩,赵成,吴欣怡,王俊鹏. 相变沥青混凝土复合结构降温效果试验分析[J]. 吉林大学学报(工学版), 2024, 54(1): 180-187.
[11] 唐乃膨,薛晨阳,刘少鹏,朱洪洲,李睿. 胶粉改性沥青老化机理及表征评价研究综述[J]. 吉林大学学报(工学版), 2024, 54(1): 22-43.
[12] 王壮,冯振刚,姚冬冬,崔奇,沈若廷,李新军. 导电沥青混凝土研究进展[J]. 吉林大学学报(工学版), 2024, 54(1): 1-21.
[13] 赵胜前,丛卓红,游庆龙,李源. 沥青-集料黏附和剥落研究进展[J]. 吉林大学学报(工学版), 2023, 53(9): 2437-2464.
[14] 马涛,马源,黄晓明. 基于多元非线性回归的智能压实关键参数最优解[J]. 吉林大学学报(工学版), 2023, 53(7): 2067-2077.
[15] 杨柳,王创业,王梦言,程阳. 设置自动驾驶小客车专用车道的六车道高速公路交通流特性[J]. 吉林大学学报(工学版), 2023, 53(7): 2043-2052.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!