吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (01): 264-269.doi: 10.13229/j.cnki.jdxbgxb201401043

• 论文 • 上一篇    下一篇

改进的基于MSR二维谱的OMEGA-K双基SAR成像算法

刘玉春1,2, 王俊1, 张各各1   

  1. 1. 西安电子科技大学 雷达信号处理国家重点实验室, 西安 710071;
    2. 周口师范学院 物理与电子工程系, 河南 周口 466001
  • 收稿日期:2012-08-08 出版日期:2014-01-01 发布日期:2014-01-01
  • 作者简介:刘玉春(1979-),男,博士研究生.研究方向:双基SAR成像和无源雷达成像.E-mail:lycdgp@163.com
  • 基金资助:

    国家部委预研基金项目(9140C010507100C01);“863”国家高技术研究发展计划项目(2010AAJ144).

Modified OMEGA-K imaging algorithm for bistatic SAR based on MSR 2D spectrum

LIU Yu-chun1,2, WANG Jun1, ZHANG Ge-ge1   

  1. 1. National Key Laboratory of Radar Siganl Processing, Xidian University, Xi'an 710071, China;
    2. Department of Physics and Electronic Engineering, Zhoukou Normal University, Zhoukou 466001, China
  • Received:2012-08-08 Online:2014-01-01 Published:2014-01-01

摘要:

提出了一种改进的基于级数反演(MSR)二维谱的双基合成孔径雷达(SAR)OMEGA-K成像算法。在双基SAR OMEGA-K算法的基础上,通过在距离频域方位时域内的斜距历程高阶项对消处理,使回波信号二维谱和基于低阶泰勒展开的MSR二维谱相匹配,进而采用OMEGA-K成像算法实现聚焦成像。仿真实验中,在斜距历程同为二阶展开的情况下,改进的OMEGA-K算法的聚焦效果要优于常规OMEGA-K算法,而与三阶泰勒展开时的常规OMEGA-K算法聚焦效果非常接近,表明该算法在斜距历程低阶泰勒展开的情况下可以取得较好的聚焦效果,能够降低算法的复杂度。

关键词: 通信技术, 双基合成孔径雷达, 成像算法, OMEGA-K

Abstract:

A modified OMEGA-K imaging algorithm is proposed to reduce the computational complexity of the Method of Series Reversion (MSR) 2D point target spectrum for the bistatic Synthetic Aperture Radar (SAR). By performing the cancellation of the high order term of range history in range-frequency azimuth-time domain, 2D point target spectrum can be matched with low order Taylor expansion of echo signal, so that the focused imaging can be achieved by the OMEGA-K algorithm. The simulation results indicate that the modified OMEGA-K for range history approximated by second order Taylor expansion can achieve better focused performance than that of conventional algorithm for range history approximated by second order Taylor expansion, and approach the performance of the conventional algorithm for range history approximated by three order expansion. This demonstrates that the proposed algorithm has a good focusing performance by low order Taylor expansion, thus lowers the computational complexity.

Key words: communication, bistatic synthetic aperture radar, imaging algorithm, OMEGA-K

中图分类号: 

  • TN957.52

[1] Loffeld O, Nies H, Peters V, et al. Models and useful relations for bistatic SAR processing[J]. IEEE Trans Geosci Remote Sens, 2004, 42 (10): 2031-2038.

[2] Wang R, Loffeld O, Ui-Ann Q, et al.A bistatic point target reference spectrum for general bistatic SAR processing[J]. IEEE Geosci Remote Sens Lett, 2008, 5(3):517-521.

[3] Wang R, Deng Y, Loffeld O, et al. Processing the azimuth-variant bistatic SAR data by using monostatic imaging algorithm based on two-dimensional priciple of stationary phase[J]. IEEE Trans Geosci Remote Sens, 2011, 49(10): 3504-3520.

[4] Neo Y, Wong F, Cumming I. A two-dimensional spectrum for bistatic SAR processing using series reversion[J]. IEEE Geosci Remote Sens Lett, 2007, 4 (1): 93-96.

[5] Natroshvili K, Loffeld O, Nies H, et al. Focusing of general bistatic SAR configuration data with 2-D inversescaled FFT[J]. IEEE Trans Geosci Remote Sens, 2006, 44 (10): 2718-2727.

[6] Wang R, Loffeld O, Nies H, et al. Chirp scaling algorithm for the bistatic SAR data in the constant-offset configuration[J]. IEEE Trans Geosci Remote Sens, 2009, 47 (3): 952-964.

[7] Neo Y, Wong F, Cumming I. Processing of azimuth-invariant bistatic SAR data using the range Doppler algorithm[J]. IEEE Trans Geosci Remote Sens, 2008, 46(1): 14-21.

[8] Liu Bao-chang, Wang Tong, Wu Qi-song, et al. Bistatic SAR data focusing using an OMEGA-K algorithm based on method of series reversion[J]. IEEE Trans Geosci Remote Sens, 2009, 47(8): 2899-2912.

[1] 周彦果,张海林,陈瑞瑞,周韬. 协作网络中采用双层博弈的资源分配方案[J]. 吉林大学学报(工学版), 2018, 48(6): 1879-1886.
[2] 孙晓颖, 扈泽正, 杨锦鹏. 基于分层贝叶斯网络的车辆发动机系统电磁脉冲敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[3] 董颖, 崔梦瑶, 吴昊, 王雨后. 基于能量预测的分簇可充电无线传感器网络充电调度[J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[4] 牟宗磊, 宋萍, 翟亚宇, 陈晓笑. 分布式测试系统同步触发脉冲传输时延的高精度测量方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281.
[5] 丁宁, 常玉春, 赵健博, 王超, 杨小天. 基于USB 3.0的高速CMOS图像传感器数据采集系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[6] 陈瑞瑞, 张海林. 三维毫米波通信系统的性能分析[J]. 吉林大学学报(工学版), 2018, 48(2): 605-609.
[7] 张超逸, 李金海, 阎跃鹏. 双门限唐检测改进算法[J]. 吉林大学学报(工学版), 2018, 48(2): 610-617.
[8] 关济实, 石要武, 邱建文, 单泽彪, 史红伟. α稳定分布特征指数估计算法[J]. 吉林大学学报(工学版), 2018, 48(2): 618-624.
[9] 李炜, 李亚洁. 基于离散事件触发通信机制的非均匀传输网络化控制系统故障调节与通信满意协同设计[J]. 吉林大学学报(工学版), 2018, 48(1): 245-258.
[10] 孙晓颖, 王震, 杨锦鹏, 扈泽正, 陈建. 基于贝叶斯网络的电子节气门电磁敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(1): 281-289.
[11] 武伟, 王世刚, 赵岩, 韦健, 钟诚. 蜂窝式立体元图像阵列的生成[J]. 吉林大学学报(工学版), 2018, 48(1): 290-294.
[12] 袁建国, 张锡若, 邱飘玉, 王永, 庞宇, 林金朝. OFDM系统中利用循环前缀的非迭代相位噪声抑制算法[J]. 吉林大学学报(工学版), 2018, 48(1): 295-300.
[13] 王金鹏, 曹帆, 贺晓阳, 邹念育. 基于多址干扰和蜂窝间互扰分布的多载波系统联合接收方法[J]. 吉林大学学报(工学版), 2018, 48(1): 301-305.
[14] 石文孝, 孙浩然, 王少博. 无线Mesh网络信道分配与路由度量联合优化算法[J]. 吉林大学学报(工学版), 2017, 47(6): 1918-1925.
[15] 姜来为, 沙学军, 吴宣利, 张乃通. LTE-A异构网络中新的用户选择接入和资源分配联合方法[J]. 吉林大学学报(工学版), 2017, 47(6): 1926-1932.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!