吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (2): 399-405.doi: 10.13229/j.cnki.jdxbgxb201602010

• 论文 • 上一篇    下一篇

基于小波变换和粒子群小波神经网络组合模型的有效停车泊位短时预测

季彦婕1, 2, 陈晓实1, 2, 王炜1, 2, 胡波1, 2   

  1. 1.东南大学 交通学院,南京 210096;
    2.现代城市交通技术江苏高校协同创新中心,南京 210096
  • 收稿日期:2014-05-06 出版日期:2016-02-20 发布日期:2016-02-20
  • 作者简介:季彦婕(1980-),女,副教授,博士.研究方向:交通诱导信息系统.E-mail:jiyanjie@seu.edu.cn
  • 基金资助:
    国家自然科学基金国际合作与交流项目(5151101143); 国家自然科学基金项目(51338003,50908051); 江苏省普通高校研究生科研创新计划项目(SJLX_0094)

Short-term forecasting of parking space using particle swarm optimization-wavelet neural network model

JI Yan-jie1, 2, CHEN Xiao-shi1, 2, WANG Wei1, 2, HU Bo1, 2   

  1. 1.School of Transportation, Southeast University, Nanjing 210096, China;
    2.Jiangsu Province Collaborative Innovation Center of Modern Urben Traffic Technologies,Nanjing 210096,China
  • Received:2014-05-06 Online:2016-02-20 Published:2016-02-20

摘要: 基于停车场有效停车泊位短时变化特性,提出了一种小波变换和粒子群小波神经网络组合预测方法.首先,通过选择合适的小波函数对有效停车泊位时间序列进行多尺度的小波分解与重构,然后对重构后的时间序列分别采用小波神经网络进行预测,并利用粒子群算法对神经网络初始参数的选取进行优化,最后将各自外推的预测结果进行合成,得到最终预测结果.实例分析表明:与单独使用小波神经网络模型相比,小波变换-粒子群小波神经网络模型的预测精度提高了5~7倍,且预测稳定性较好.

关键词: 交通运输系统工程, 有效停车泊位, 短时预测, 小波变换, 粒子群算法, 小波神经网络

Abstract: A forecasting model was proposed based on the short-term changing characteristics of Available Parking Space (APS). This model integrates the wavelet analysis, Particle Swarm Optimization (PSO) and Wavelet Neural Network (WNN). First, the APS time series were decomposed and reconstituted by wavelet analysis. Then, WNN model was used to forecast the reconstructed time series respectively. The PSO method was employed to optimize the selection of the initial parameters of the neural network. Finally, the final forecasted ASP was induced by integrating the prediction results. A case study was carried out to verify the applicability of the proposed model. Compared with simple WNN model, the new method enjoys higher accuracy and stable performance that the APS forecasting can be improved by 5 to 7 times by this new method.

Key words: engineering of communication and transportation system, available parking space, short-term forecasting, wavelet, particle swarm optimization, wavelet neural network

中图分类号: 

  • U491
[1] 杨兆升,陈晓冬.智能化停车诱导系统有效停车泊位数据的预测技术研究[J].交通运输系统工程与信息,2003,3(4):12-15.
Yang Zhao-sheng, Chen Xiao-dong. Research on the estimation for effective parking space of the intelligentized parking guidance system[J]. Journal of Transportation Systems Engineering and Information Technology, 2003, 3(4): 12-15.
[2] 陈群, 晏克非, 王仁涛, 等. 基于相空间重构及 Elman 网络的停车泊位数据预测[J]. 同济大学学报: 自然科学版, 2007, 35(5): 607-611.
Chen Qun, Yan Ke-fei, Wang Ren-tao, et al. Parking space information prediction based on phrase construction and Elman neural network[J]. Jounal of Tongji University(Natural Science Editon), 2007, 35(5): 607-611.
[3] Dunning A E. Method and System for Projecting Dynamic Parking Availability Based on an Ongoing Survey for Remote Lots with High Demand[P]. United State Patent:7049979,2006-05-23.
[4] Liu S, Guan H, Yan H, et al. Unoccupied parking space prediction of chaotic time series[C]//Proceedings of the 10th International Conference of Chinese Transportation Professionals,Beijing,2010:2122-2131.
[5] Caliskan M, Barthels A, Scheuermann B, et al. Predicting parking lot occupancy in vehicular ad hoc networks[C]//Proceedings of the Vehicular Technology Conference, 2007 VTC2007-Spring IEEE 65th, Dublin,2007:277-281.
[6] 许增昭. 基于泊位诱导及短时预测的智能停车管理系统研究[D].广州:华南理工大学土木与交通学院, 2010.
Xu Zeng-zhao. Research on intelligent parking management system based on parking space guidance and short-term prediction[D].Guangzhou:School of Civil Engineering and Transportation,South China University of Technology, 2010.
[7] 季彦婕, 王炜, 邓卫. 停车场有效泊位占有率变化特性及其短时预测模型[J]. 东南大学学报: 英文版, 2008, 23(4): 604-608.
Ji Yan-jie, Wang Wei, Deng Wei. Availalble parking space occupancy change characteristics and short-term forecasting model[J]. Journal of Southeast University(English Edition), 2008, 23(4): 604-608.
[8] Kriechbaumer T, Angus A, Parsons D, et al. An improved wavelet-ARIMA approach for forecasting metal prices[J]. Resources Policy, 2014, 39:32-41.
[9] 杨飞. 基于回声状态网络的交通流预测模型及其相关研究[D].北京: 北京邮电大学计算机学院, 2012.
Yang Fei. Traffic flow predition model based on echo state networks and related research[D]. Beijing: School of Computer Science,Beijing University of Posts and Telecommunivations,2012.
[10] Mallat S. A Wavelet Tour of Signal Processing[M]. Academic Press, 1999.
[11] Xu L, Liu S. Study of short-term water quality prediction model based on wavelet neural network[J]. Mathematical and Computer Modelling, 2013, 58(3/4): 807-813.
[12] Inbarani H H, Azar A T, Jothi G. Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis[J]. Computer Methods and Programs in Biomedicine, 2014, 113(1): 175-185.
[1] 陈永恒,刘芳宏,曹宁博. 信控交叉口行人与提前右转机动车冲突影响因素[J]. 吉林大学学报(工学版), 2018, 48(6): 1669-1676.
[2] 常山,宋瑞,何世伟,黎浩东,殷玮川. 共享单车故障车辆回收模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1677-1684.
[3] 曲大义,杨晶茹,邴其春,王五林,周警春. 基于干线车流排队特性的相位差优化模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1685-1693.
[4] 宗芳, 齐厚成, 唐明, 吕建宇, 于萍. 基于GPS数据的日出行模式-出行目的识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1374-1379.
[5] 刘翔宇, 杨庆芳, 隗海林. 基于随机游走算法的交通诱导小区划分方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1380-1386.
[6] 钟伟, 隽志才, 孙宝凤. 不完全网络的城乡公交一体化枢纽层级选址模型[J]. 吉林大学学报(工学版), 2018, 48(5): 1387-1397.
[7] 刘兆惠, 王超, 吕文红, 管欣. 基于非线性动力学分析的车辆运行状态参数数据特征辨识[J]. 吉林大学学报(工学版), 2018, 48(5): 1405-1410.
[8] 宗芳, 路峰瑞, 唐明, 吕建宇, 吴挺. 习惯和路况对小汽车出行路径选择的影响[J]. 吉林大学学报(工学版), 2018, 48(4): 1023-1028.
[9] 栾鑫, 邓卫, 程琳, 陈新元. 特大城市居民出行方式选择行为的混合Logit模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1029-1036.
[10] 臧国帅, 孙立军. 基于惰性弯沉点的刚性下卧层深度设置方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044.
[11] 陈永恒, 刘鑫山, 熊帅, 汪昆维, 谌垚, 杨少辉. 冰雪条件下快速路汇流区可变限速控制[J]. 吉林大学学报(工学版), 2018, 48(3): 677-687.
[12] 王占中, 卢月, 刘晓峰, 赵利英. 基于改进和声搜索算法的越库车辆排序[J]. 吉林大学学报(工学版), 2018, 48(3): 688-693.
[13] 李志慧, 胡永利, 赵永华, 马佳磊, 李海涛, 钟涛, 杨少辉. 基于车载的运动行人区域估计方法[J]. 吉林大学学报(工学版), 2018, 48(3): 694-703.
[14] 陈松, 李显生, 任园园. 公交车钩形转弯交叉口自适应信号控制方法[J]. 吉林大学学报(工学版), 2018, 48(2): 423-429.
[15] 苏书杰, 何露. 步行交通规划交叉路口行人瞬时动态拥塞疏散模型[J]. 吉林大学学报(工学版), 2018, 48(2): 440-447.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!