吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (6): 1692-1697.doi: 10.13229/j.cnki.jdxbgxb201406024

• • 上一篇    下一篇

基于多种步态的德国牧羊犬足-地接触分析

钱志辉1, 苗怀彬1, 商震2, 任露泉1   

  1. 1.吉林大学 工程仿生教育部重点实验室,长春 130022;
    2.吉林大学 汽车工程学院,长春 130022
  • 收稿日期:2013-11-14 出版日期:2014-11-01 发布日期:2014-11-01
  • 通讯作者: 任露泉(1944-),男,教授,博士生导师,中国科学院院士.研究方向:工程仿生.E-mail:lqren@jlu.edu.cn
  • 作者简介:钱志辉(1981-),男,副教授,博士.研究方向:生物力学及工程仿生.E-mail:
  • 基金资助:
    国家自然科学基金项目(51105167); 吉林省科技发展计划项目(20130522187JH); 中国博士后基金项目(2013M530985)

Foot-ground contact analysis of German shepherd dog in walking, trotting and jumping gaits

QIAN Zhi-hui1, MIAO Huai-bin1, Shang Zhen2, REN Lu-quan1   

  1. 1.Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China;
    2.College of Automotive Engineering, Jilin University, Changchun 130022,China
  • Received:2013-11-14 Online:2014-11-01 Published:2014-11-01

摘要: 以德国牧羊犬为研究对象,测试其在常速行走、对角小跑、跳跃3种步态下的足-地接触作用特征,通过分析犬右前足的垂直地反力、足底动态压力分布特征和模式得出:试验范围内,犬右前足的垂直地反力峰值由其体重的0.69倍(常速行走)增长到其体重的1.43倍(跳跃);随着足-地接触冲击力的增大,犬右前足的主要着地区域和主要承力点产生了适应性变化和调整,由常速行走的足外侧(第四指、第五指)逐渐调整为跳跃状态下的足中部(第三指、第四指)和掌垫区域,这种适应性调整有利于其足部缓冲储能功能的发挥。

关键词: 工程仿生学, 犬类动物, 步态, 足底压力, 缓冲, 生物力学

Abstract: The foot-ground contact biomechanics of German Shepherd Dog (GSD) in normal walking, trotting and jumping gaits were investigated using a pressure plate system. The peak of the vertical ground reaction force and the dynamic foot pressure distribution on the paw pad of right-forefoot was measured and analyzed. It was found that the peak ground reaction force acting on the forefoot was about 0.69 times of the weight of GSD in walking gait; while in jumping gait, the reaction force increased to 1.43 times of weight of GSD. Meantime, along with the increase in the vertical foot-ground impact force, GSD made adjustment of its foot contact region for force bearing. In walking gait, the contact region was the 4th and 5th toes, and in jumping gait the contact region was shifted to the 3rd, 4th toes and metacarpal. Such adjustment is of great benefit to cushion and impact energy absorption.

Key words: engineering bionics, canine animal, gait, foot pressure, buffering, biomechanics

中图分类号: 

  • TB17
[1] Hirose S, Kato K. Study on quadruped walking robot in tokyo institute of technology-future[C]∥IEEE International on Robotics and Automation, San Francisco, 2000: 414-419.
[2] 高峰. 机构学研究现状与发展趋势的思考[J]. 机械工程学报,2005,41(8): 3-17. Gao Feng. Reflection on the current status and development strategy of mechanism research[J]. Chinese Journal of Mechanical Engineering, 2005,41(8): 3-17.
[3] 陈学东,郭鸿勋,渡边桂吾. 四足步行机器人爬行步态的正运动学分析[J]. 机械工程学报, 2003, 39(2):8-12. Chen Xue-dong, Guo Hong-xun, Keigo Watanabe. Direct kinematics analysis of crawl gait for a quadruped robot[J]. Chinese Journal of Mechanical Engineering, 2003, 39(2):8-12.
[4] 王吉岱, 卢坤媛, 徐淑芬, 等. 四足步行机器人研究现状及展望[J]. 制造业自动化, 2009,31(2): 4-6. Wang Ji-dai, Lu Kun-yuan, Xu Shu-fen, et al. Research situation and prospect on quadruped walking robot[J]. Manufacturing Automation, 2009, 31(2): 4-6.
[5] 马建旭,马培荪,杨保忠,等. 四足步行机器人中一种新型腿结构缓冲特性[J]. 上海交通大学学报, 1999, 33(7): 847-850. Ma Jian-xu, Ma Pei-sun, Yang Bao-zhong, et al. Buffering of new walking mechanism in quadruped walking robot[J]. Journal of Shanghai Jiaotong University, 1999, 33(7): 847-850.
[6] Lu Y X. Significance and progress of bionics[J]. Journal of Bionics Engineering, 2004, 1(1):1-3.
[7] Mennitto G, Bueheler M. CARL: A complaint articulated robot leg for dynamic locomotion[J]. Robotics and Autonomous Systems, 1996, 18(3): 337-344.
[8] Marhefka D W, Orin D E. Intelligent control of quadruped gallops[J]. IEEE/ASME Transaction on Mechatronics, 2003, 8(4): 446-456.
[9] Zhang Z G, Fukuoka Y, Kimura H. Stable quadrupedal running based on a spring-Loaded two-segment Legged model[C]∥IEEE International Conference on Robotics & Automation, New Orieans, 2004: 2601-2606.
[10] Papadopoulos D, Buehler M. Stable running in a quadruped robot with compliant legs[C]∥IEEE International Conference on Robotics and Automation, San Francisco, 2000:444-449.
[11] Budsberg S C, Verstraete M C, Brown J, et al. Vertical loading rates in clinically normal dogs at a trot[J]. American Journal of Veterinary Research, 1995, 56(10): 1275-1280.
[12] Jahss M H, Kummer F, Michelson J D. Investigations into the fat pads of the sole of the foot: heel pressure studies[J]. Foot & Ankle, 1992, 13(5): 227-232.
[13] Biewener A A. Biomechanics of mammalian terrestrial locomotion[J]. Science, 1990, 250(4984): 1097-1103.
[14] Chi K J. Functional implications of the mechanical inhomogeneity in mammalian paw pads[C]∥Integrative and Comparative Biology, New Orleans,2003: 827.
[15] Rumph P F, Lander J E, Kincaid S A, et al. Ground reaction force profiles from force platform gait analyses of clinically normal mesomorphic dogs at the trot[J]. American Journal of Veterinary Research, 1994, 55(6): 756-761.
[16] 田为军, 丛茜, 金敬福. 德国牧羊犬的关节角及其地反力[J]. 吉林大学学报:工学版,2009,39(增刊1):227-231. Tian Wei-jun, Cong Qian, Jin Jing-fu. Joint angles and ground reaction force of German shepherd dog[J]. Journal of Jilin University(Engineering and Technology Edition), 2009,39(Sup.1): 227-231.
[1] 熙鹏,丛茜,王庆波,郭华曦. 仿生条纹形磨辊磨损试验及耐磨机理分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1787-1792.
[2] 郭昊添,徐涛,梁逍,于征磊,刘欢,马龙. 仿鲨鳃扰流结构的过渡段换热表面优化设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1793-1798.
[3] 田为军, 王骥月, 李明, 张兴旺, 张勇, 丛茜. 面向水上机器人的水黾运动观测[J]. 吉林大学学报(工学版), 2018, 48(3): 812-820.
[4] 陈吉清, 杜天亚, 兰凤崇. 钝性碰撞中人体肝脏生物力学响应数值分析[J]. 吉林大学学报(工学版), 2018, 48(2): 398-406.
[5] 钱志辉, 周亮, 任雷, 任露泉. 具有仿生距下关节和跖趾关节的完全被动步行机[J]. 吉林大学学报(工学版), 2018, 48(1): 205-211.
[6] 田丽梅, 王养俊, 李子源, 商延赓. 仿生功能表面内流减阻测试系统的研制[J]. 吉林大学学报(工学版), 2017, 47(4): 1179-1184.
[7] 陈东辉, 刘伟, 吕建华, 常志勇, 吴婷, 慕海锋. 基于虾夷扇贝体表结构的玉米茬根捡拾器仿生设计[J]. 吉林大学学报(工学版), 2017, 47(4): 1185-1193.
[8] 王颖, 李建桥, 张广权, 黄晗, 邹猛. 基于多种介质的仿生步行足力学特性[J]. 吉林大学学报(工学版), 2017, 47(2): 546-551.
[9] 王力玉, 陈岚, 郝晓冉, 王强, 倪茂. 基于生命值敏感的闪存数据库缓冲区替换算法[J]. 吉林大学学报(工学版), 2017, 47(2): 632-638.
[10] 高继东, 曾必强, 彭伟. 电动自行车与轿车碰撞中骑车人的伤害特征[J]. 吉林大学学报(工学版), 2016, 46(6): 1786-1791.
[11] 葛长江, 叶辉, 胡兴军, 于征磊. 鸮翼后缘噪声的预测及控制[J]. 吉林大学学报(工学版), 2016, 46(6): 1981-1986.
[12] 李梦, 苏义脑, 孙友宏, 高科. 高胎体仿生异型齿孕镶金刚石钻头[J]. 吉林大学学报(工学版), 2016, 46(5): 1540-1545.
[13] 曹福成, 邢笑雪, 李元春, 赵希禄. 下肢康复机器人轨迹自适应滑模阻抗控制[J]. 吉林大学学报(工学版), 2016, 46(5): 1602-1608.
[14] 梁云虹, 任露泉. 自然生境及其仿生学初探[J]. 吉林大学学报(工学版), 2016, 46(5): 1746-1756.
[15] 张帅帅, 荣学文, 李贻斌, 李彬. 崎岖地形环境下四足机器人的静步态规划方法[J]. 吉林大学学报(工学版), 2016, 46(4): 1287-1296.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!