吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (2): 596-599.doi: 10.13229/j.cnki.jdxbgxb201502038
李抵非1,田地1,胡雄伟2
LI Di-fei1, TIAN Di1, HU Xiong-wei2
摘要: 为解决中文标准文献的自然语言处理问题,对Hierarchical Log-Bilinear英文统计语言模型算法进行了改进,构建了适用于中文语言的模型。采用深度神经网络技术,将无监督学习与有监督学习相结合,利用多层受限玻尔兹曼机训练文本词向量,并将训练好的词向量输入到前馈神经网络进行有监督训练,完成对中文标准文献内容的机器学习。对100多万条标准题录数据进行训练的实验结果表明,该方法能有效提高语言模型的学习能力。
中图分类号:
[1] Blei David M, Ng Andrew, Jordan Michael. Latent dirichlet allocation[J]. JMLR, 2003,3:993-1022. [2] Blei David M, Griffths Thomas L, Jordan Michael I. The nested chinese restaurant process and bayesian nonparametric inference of topic hierarchies[J]. ACM, 2010,57(2):7-38. [3] Mimno D, McCallum A. Topic models conditioned on arbitrary features with dirichlet-multinomial regression[J].UAI, 2008:411-418. [4] Salakhutdinov Ruslan, Hinton Georey. Replicated softmax: an undirected topic model[J].In Advances in Neural Information Processing Systems, 2009, 22:1607-1614. [5] Bengio Yoshua, Ducharme Réjean, Vincent Pascal, et al. A neural probabilistic language model[J].Journal of Machine Learning Research, 2003 (3): 1137-1155. [6] Collobert Ronan, Weston Jason. Natural language processing (almost) from scratch[J].Journal of Machine Learning Research, 2000 (1): 1-48. [7] Mnih Andriy, Hinton Geoffrey.Three new graphical models for statistical language modelling[C]∥International Conference on Machine Learning,Oregan,USA,2007:641-648. [8] Mnih Andriy, Hinton Geoffrey.A scalable hierarchical distributed language model[C]∥Conference on Neural Information Processing Systems,Canada,2008:1081-1088. [9] Srivastava N, Salakhutdinov R R, Hinton G E. Modeling documents with a deep boltzmann machine in uncertainty in artificial intelligence[C]∥The Conference on Uncertainty in Artificial Intelligence,Bellevue,Washiugton,USA,2013:1309-1318. [10] Mikolov T, Karafiát M, Burget L, et al. Recurrent neural network based language model[C]∥Interspeech,Makuhari,Japan,2010:1045-1048. [11] Huang Eric H, Socher Richard, Manning Christopher D. Improving word representations via global context and multiple word prototypes[C]∥Association for Computational Linguistics,Stroudsburg,PA,USA,2012:873-882. [12] Xue N. Chinese word segmentation as character tagging[J]. Computational Linguistics and Chinese Language Processing, 2003, 8(1): 29-48. [13] Tang B, Wang X, Wang X. Chinese word segmentation based on large margin nethods[J]. Int J of Asian Lang Proc, 2009, 19(2): 55-68. [14] Zhao H, Kit C. Integrating unsupervised and supervised word segmentation: the role of goodness measures[J]. Information Sciences, 2011, 181(1): 163-183. [15] Hinton G. A practical guide to training restricted Boltzmann machines[J]. Momentum, 2010, 9(1): 926. [16] Bengio Y. Learning deep architectures for AI[J]. Foundations and Trends in Machine Learning, 2009, 2(1): 1-127. [17] Hinton G E,Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J].Science, 2006, 313(5786): 504-507. [18] Bengio Y, Lamblin P, Popovici D, et al. Greedy layer-wise training of deep networks[J]. Advances in Neural Information Processing Systems, 2007, 19: 153. [19] Graves A, Mohamed A, Hinton G. Speech recognition with deep recurrent neural networks[C]∥Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2013: 6645-6649. [20] Tieleman T. Training restricted Boltzmann machines using approximations to the likelihood gradient[C]∥Proceedings of the 25th International Conference on Machine Learning,ACM, 2008: 1064-1071. [21] Trurian J, Ratinov L,Bengio Y.Word representations:a simple and general method for semi-supervised learning[C]∥Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics,Stroudsburg,PA,USA,2010:384-394. |
[1] | 董飒, 刘大有, 欧阳若川, 朱允刚, 李丽娜. 引入二阶马尔可夫假设的逻辑回归异质性网络分类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1571-1577. |
[2] | 顾海军, 田雅倩, 崔莹. 基于行为语言的智能交互代理[J]. 吉林大学学报(工学版), 2018, 48(5): 1578-1585. |
[3] | 王旭, 欧阳继红, 陈桂芬. 基于垂直维序列动态时间规整方法的图相似度度量[J]. 吉林大学学报(工学版), 2018, 48(4): 1199-1205. |
[4] | 张浩, 占萌苹, 郭刘香, 李誌, 刘元宁, 张春鹤, 常浩武, 王志强. 基于高通量数据的人体外源性植物miRNA跨界调控建模[J]. 吉林大学学报(工学版), 2018, 48(4): 1206-1213. |
[5] | 黄岚, 纪林影, 姚刚, 翟睿峰, 白天. 面向误诊提示的疾病-症状语义网构建[J]. 吉林大学学报(工学版), 2018, 48(3): 859-865. |
[6] | 李雄飞, 冯婷婷, 骆实, 张小利. 基于递归神经网络的自动作曲算法[J]. 吉林大学学报(工学版), 2018, 48(3): 866-873. |
[7] | 刘杰, 张平, 高万夫. 基于条件相关的特征选择方法[J]. 吉林大学学报(工学版), 2018, 48(3): 874-881. |
[8] | 王旭, 欧阳继红, 陈桂芬. 基于多重序列所有公共子序列的启发式算法度量多图的相似度[J]. 吉林大学学报(工学版), 2018, 48(2): 526-532. |
[9] | 杨欣, 夏斯军, 刘冬雪, 费树岷, 胡银记. 跟踪-学习-检测框架下改进加速梯度的目标跟踪[J]. 吉林大学学报(工学版), 2018, 48(2): 533-538. |
[10] | 刘雪娟, 袁家斌, 许娟, 段博佳. 量子k-means算法[J]. 吉林大学学报(工学版), 2018, 48(2): 539-544. |
[11] | 曲慧雁, 赵伟, 秦爱红. 基于优化算子的快速碰撞检测算法[J]. 吉林大学学报(工学版), 2017, 47(5): 1598-1603. |
[12] | 李嘉菲, 孙小玉. 基于谱分解的不确定数据聚类方法[J]. 吉林大学学报(工学版), 2017, 47(5): 1604-1611. |
[13] | 邵克勇, 陈丰, 王婷婷, 王季驰, 周立朋. 无平衡点分数阶混沌系统全状态自适应控制[J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230. |
[14] | 王生生, 王创峰, 谷方明. OPRA方向关系网络的时空推理[J]. 吉林大学学报(工学版), 2017, 47(4): 1238-1243. |
[15] | 马淼, 李贻斌. 基于多级图像序列和卷积神经网络的人体行为识别[J]. 吉林大学学报(工学版), 2017, 47(4): 1244-1252. |
|